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Chapter 1

Yacas under the hood

This part of the manual is a somewhat in-depth explana-
tion of the Yacas programming language and environment.
It assumes that you have worked through the introductory
tutorial. You should consult the function reference about
how to use the various Yacas functions mentioned here.

1.1 The Yacas architecture

Yacas is designed as a small core engine that interprets
a library of scripts. The core engine provides the syntax
parser and a number of hard-wired functions, such as Set()
or MathExp() which cannot be redefined by the user. The script
library resides in the scripts directory “scripts/” and contains
higher-level definitions of functions and constants. The library
scripts are on equal footing with any code the user executes
interactively or any files the user loads.

Generally, all core functions have plain names and almost all
are not “bodied” or infix operators. The file corefunctions.h

in the source tree lists declarations of all kernel functions callable
from Yacas; consult it for reference. For many of the core
functions, the script library already provides convenient aliases.
For instance, the addition operator “+” is defined in the script
scripts/standard while the actual addition of numbers is per-
formed through the built-in function MathAdd.

1.2 Startup, scripts and .def files

When Yacas is first started or restarted, it executes the script
yacasinit.ys in the scripts directory. This script may load
some other scripts. In order to start up quickly, Yacas does
not execute all other library scripts at first run or at restart.
It only executes the file yacasinit.ys and all .def files in
the scripts. The .def files tell the system where it can find
definitions for various library functions. Library is divided
into “packages” stored in “repository” directories. For exam-
ple, the function ArcTan is defined in the stdfuncs package;
the library file is stdfuncs.rep/code.ys and the .def file is
stdfuncs.rep/code.ys.def. The function ArcTan mentioned
in the .def file, therefore Yacas will know to load the package
stdfuncs when the user invokes ArcTan. This way Yacas knows
where to look for any given function without actually loading
the file where the function is defined.

There is one exception to the strategy of delayed loading of
the library scripts. Namely, the syntax definitions of infix, pre-
fix, postfix and bodied functions, such as Infix("*",4) cannot
be delayed (it is currently in the file stdopers.ys). If it were
delayed, the Yacas parser would encounter 1+2 (typed by the
user) and generate a syntax error before it has a chance to load
the definition of the operator “+”.

1.3 Object types

Yacas supports two basic kinds of objects: atoms and com-
pounds. Atoms are (integer or real, arbitrary-precision) num-
bers such as 2.71828, symbolic variables such as A3 and charac-
ter strings. Compounds include functions and expressions, e.g.
Cos(a-b) and lists, e.g. {1+a,2+b,3+c}.

The type of an object is returned by the built-in function
Type, for example:

In> Type(a);

Out> "";

In> Type(F(x));

Out> "F";

In> Type(x+y);

Out> "+";

In> Type({1,2,3});

Out> "List";

Internally, atoms are stored as strings and compounds as lists.
(The Yacas lexical analyzer is case-sensitive, so List and list

are different atoms.) The functions String() and Atom() con-
vert between atoms and strings. A Yacas list {1,2,3} is inter-
nally a list (List 1 2 3) which is the same as a function call
List(1,2,3) and for this reason the ”type” of a list is the string
"List". During evaluation, atoms can be interpreted as num-
bers, or as variables that may be bound to some value, while
compounds are interpreted as function calls.

Note that atoms that result from an Atom() call may be in-
valid and never evaluate to anything. For example, Atom(3X)
is an atom with string representation ”3X” but with no other
properties.

Currently, no other lowest-level objects are provided by the
core engine besides numbers, atoms, strings, and lists. There is,
however, a possibility to link some externally compiled code that
will provide additional types of objects. Those will be available
in Yacas as “generic objects.” For example, fixed-size arrays are
implemented in this way.

1.4 Yacas evaluation scheme

Evaluation of an object is performed either explicitly by the
built-in command Eval() or implicitly when assigning variables
or calling functions with the object as argument (except when
a function does not evaluate that argument). Evaluation of an
object can be explicitly inhibited using Hold(). To make a func-
tion not evaluate one of its arguments, a HoldArg(funcname,

argname) must be declared for that function.

Internally, all expressions are either atoms or lists (perhaps
nested). Use FullForm() to see the internal form of an ex-
pression. A Yacas list expression written as {a, b} is repre-
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sented internally as (List a b), equivalently to a function call
List(a,b).

Evaluation of an atom goes as follows: if the atom is bound
locally as a variable, the object it is bound to is returned, oth-
erwise, if it is bound as a global variable then that is returned.
Otherwise, the atom is returned unevaluated. Note that if an
atom is bound to an expression, that expression is considered
as final and is not evaluated again.

Internal lists of atoms are generally interpreted in the follow-
ing way: the first atom of the list is some command, and the
atoms following in the list are considered the arguments. The
engine first tries to find out if it is a built-in command (core
function). In that case, the function is executed. Otherwise, it
could be a user-defined function (with a “rule database”), and
in that case the rules from the database are applied to it. If
none of the rules are applicable, or if no rules are defined for it,
the object is returned unevaluated.

Application of a rule to an expression transforms it into a dif-
ferent expression to which other rules may be applicable. Trans-
formation by matching rules continues until no more rules are
applicable, or until a “terminating” rule is encountered. A “ter-
minating” rule is one that returns Hold() or UnList() of some
expression. Calling these functions gives an unevaluated expres-
sion because it terminates the process of evaluation itself.

The main properties of this scheme are the following. When
objects are assigned to variables, they generally are evaluated
(except if you are using the Hold() function) because assignment
var := value is really a function call to Set(var, value) and
this function evaluates its second argument (but not its first
argument). When referencing that variable again, the object
which is its value will not be re-evaluated. Also, the default
behavior of the engine is to return the original expression if it
could not be evaluated. This is a desired behavior if evaluation
is used for simplifying expressions.

One major design flaw in Yacas (one that other functional
languages like LISP also have) is that when some expression
is re-evaluated in another environment, the local variables con-
tained in the expression to be evaluated might have a different
meaning. In this case it might be useful to use the functions
LocalSymbols and TemplateFunction. Calling

LocalSymbols(a,b)

a*b;

results in “a” and ”b” in the multiplication being substituted
with unique symbols that can not clash with other variables
that may be used elsewhere. Use TemplateFunction instead
of Function to define a function whose parameters should be
treated as unique symbols.

Consider the following example:

In> f1(x):=Apply("+",{x,x});

Out> True

The function f1 simply adds its argument to itself. Now
calling this function with some argument:

In> f1(Sin(a))

Out> 2*Sin(a)

yields the expected result. However, if we pass as an argument
an expression containing the variable x, things go wrong:

In> f1(Sin(x))

Out> 2*Sin(Sin(x))

This happens because within the function, x is bound to
Sin(x), and since it is passed as an argument to Apply it will
be re-evaluated, resulting in Sin(Sin(x)). TemplateFunction

solves this by making sure the arguments can not collide like
this (by using LocalSymbols:

In> TemplateFunction("f2",{x}) Apply("+",{x,x});

Out> True

In> f2(Sin(a))

Out> 2*Sin(a)

In> f2(Sin(x))

Out> 2*Sin(x)

In general one has to be careful when functions like Apply,
Map or Eval (or derivatives) are used.

1.5 Rules

Rules are special properties of functions that are applied when
the function object is being evaluated. A function object could
have just one rule bound to it; this is similar to a “subroutine”
having a “function body” in usual procedural languages. How-
ever, Yacas function objects can also have several rules bound to
them. This is analogous of having several alternative “function
bodies” that are executed under different circumstances. This
design is more suitable for symbolic manipulations.

A function is identified by its name as returned by Type and
the number of arguments, or “arity”. The same name can be
used with different arities to define different functions: f(x) is
said to “have arity 1” and f(x,y) has arity 2. Each of these
functions may possess its own set of specific rules, which we
shall call a “rule database” of a function.

Each function should be first declared with the built-in com-
mand RuleBase as follows:

RuleBase("FunctionName",{argument list});

So, a new (and empty) rule database for f(x,y) could be
created by typing RuleBase("f",{x,y}). The names for the
arguments “x” and “y” here are arbitrary, but they will be glob-
ally stored and must be later used in descriptions of particular
rules for the function f. After the new rulebase declaration, the
evaluation engine of Yacas will begin to really recognize f as a
function, even though no function body or equivalently no rules
have been defined for it yet.

The shorthand operator := for creating user functions that we
illustrated in the tutorial is actually defined in the scripts and
it makes the requisite call to the RuleBase() function. After
a RuleBase() call you can specify parsing properties for the
function; for example, you could make it an infix or bodied
operator.

Now we can add some rules to the rule database for a function.
A rule simply states that if a specific function object with a
specific arity is encountered in an expression and if a certain
predicate is true, then Yacas should replace this function with
some other expression. To tell Yacas about a new rule you can
use the built-in Rule command. This command is what does
the real work for the somewhat more aesthetically pleasing ...

# ... <-- ... construct we have seen in the tutorial. You do
not have to call RuleBase() explicitly if you use that construct.

Here is the general syntax for a Rule() call:

Rule("foo", arity, precedence, pred) body;

This specifies that for function foo with given arity (foo(a,b)
has arity 2), there is a rule that if pred is true, then body should
be evaluated, and the original expression replaced by the result.
Predicate and body can use the symbolic names of arguments
that were declared in the RuleBase call.

All rules for a given function can be erased with a call to
Retract(funcname, arity). This is useful, for instance, when
too many rules have been entered in the interactive mode. This
call undefines the function and also invalidates the RuleBase

declaration.
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You can specify that function arguments are not evaluated be-
fore they are bound to the parameter: HoldArg("foo",a) would
then declare that the a arguments in both foo(a) and foo(a,b)

should not be evaluated before bound to a. Here the argument
name a should be the same as that used in the RuleBase()

call when declaring these functions. Inhibiting evaluation of
certain arguments is useful for procedures performing actions
based partly on a variable in the expression, such as integra-
tion, differentiation, looping, etc., and will be typically used for
functions that are algorithmic and procedural by nature.

Rule-based programming normally makes heavy use of recur-
sion and it is important to control the order in which replace-
ment rules are to be applied. For this purpose, each rule is given
a precedence. Precedences go from low to high, so all rules with
precedence 0 will be tried before any rule with precedence 1.

You can assign several rules to one and the same function, as
long as some of the predicates differ. If none of the predicates
are true, the function is returned with its arguments evaluated.

This scheme is slightly slower for ordinary functions that just
have one rule (with the predicate True), but it is a desired be-
havior for symbolic manipulation. You can gradually build up
your own functions, incrementally testing their properties.

1.6 Examples of using rules

As a simple illustration, here are the actual RuleBase() and
Rule() calls needed to define the factorial function:

In> RuleBase("f",{n});

Out> True;

In> Rule("f", 1, 10, n=0) 1;

Out> True;

In> Rule("f", 1, 20, IsInteger(n) \

And n>0) n*f(n-1);

Out> True;

This definition is entirely equivalent to the one in the tutorial.
f(4) should now return 24, while f(a) should return just f(a)

if a is not bound to any value.
The Rule commands in this example specified two rules for

function f with arity 1: one rule with precedence 10 and pred-
icate n=0, and another with precedence 20 and the predicate
that returns True only if n is a positive integer. Rules with low-
est precedence get evaluated first, so the rule with precedence
10 will be tried before the rule with precedence 20. Note that
the predicates and the body use the name “n” declared by the
RuleBase() call.

After declaring RuleBase() for a function, you could tell the
parser to treat this function as a postfix operator:

In> Postfix("f");

Out> True;

In> 4 f;

Out> 24;

There is already a function Function defined in the standard
scripts that allows you to construct simple functions. An exam-
ple would be

Function ("FirstOf", {list}) list[1] ;

which simply returns the first element of a list. This could
also have been written as

Function("FirstOf", {list})

[

list[1] ;

];

As mentioned before, the brackets [ ] are also used to com-
bine multiple operations to be performed one after the other.
The result of the last performed action is returned.

Finally, the function FirstOf could also have been defined by
typing

FirstOf(list):=list[1] ;

1.7 Structured programming and
control flow

Some functions useful for control flow are already defined in
Yacas’s standard library. Let’s look at a possible definition of a
looping function ForEach. We shall here consider a somewhat
simple-minded definition, while the actual ForEach as defined in
the standard script ”controlflow” is a little more sophisticated.

Function("ForEach",{foreachitem,

foreachlist,foreachbody})

[

Local(foreachi,foreachlen);

foreachlen:=Length(foreachlist);

foreachi:=0;

While (foreachi < foreachlen)

[

foreachi++;

MacroLocal(foreachitem);

MacroSet(foreachitem,

foreachlist[foreachi]);

Eval(foreachbody);

];

];

Bodied("ForEach");

UnFence("ForEach",3);

HoldArg("ForEach",foreachitem);

HoldArg("ForEach",foreachbody);

Functions like this should probably be defined in a separate
file. You can load such a file with the command Load("file").
This is an example of a macro-like function. Let’s first look at
the last few lines. There is a Bodied(...) call, which states that
the syntax for the function ForEach() is ForEach(item,{list})
body; – that is, the last argument to the command ForEach

should be outside its brackets. UnFence(...) states that this
function can use the local variables of the calling function. This
is necessary, since the body to be evaluated for each item will
probably use some local variables from that surrounding.

Finally, HoldArg("function",argument) specifies that the
argument “argument” should not be evaluated before being
bound to that variable. This holds for foreachitem and
foreachbody, since foreachitem specifies a variable to be set
to that value, and foreachbody is the expression that should be
evaluated after that variable is set.

Inside the body of the function definition there are calls
to Local(...). Local() declares some local variable that
will only be visible within a block [ ... ]. The command
MacroLocal() works almost the same. The difference is that
it evaluates its arguments before performing the action on it.
This is needed in this case, because the variable foreachitem

is bound to a variable to be used as the loop iterator, and it
is the variable it is bound to that we want to make local, not
foreachitem itself. MacroSet() works similarly: it does the
same as Set() except that it also first evaluates the first ar-
gument, thus setting the variable requested by the user of this
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function. The Macro... functions in the built-in functions gener-
ally perform the same action as their non-macro versions, apart
from evaluating an argument it would otherwise not evaluate.

To see the function in action, you could type:

ForEach(i,{1,2,3}) [Write(i); NewLine();];

This should print 1, 2 and 3, each on a new line.

Note: the variable names “foreach...” have been chosen so
they won’t get confused with normal variables you use. This
is a major design flaw in this language. Suppose there was
a local variable foreachitem, defined in the calling function,
and used in foreachbody. These two would collide, and the
interpreter would use only the last defined version. In general,
when writing a function that calls Eval(), it is a good idea to
use variable names that can not collide with user’s variables.
This is generally the single largest cause of bugs when writing
programs in Yacas. This issue should be addressed in the future.

1.8 Additional syntactic sugar

The parser is extended slightly to allow for fancier constructs.

• Lists, e.g. {a,b}. This then is parsed into the internal
notation (List a b) , but will be printed again as {a,b};

• Statement blocks such as [ statement1 ; statement2;];.
This is parsed into a Lisp object (Prog (statement1 )

(statement2 )), and printed out again in the proper form.

• Object argument accessors in the form of expr[ index

]. These are mapped internally to Nth(expr,index).
The value of index=0 returns the operator of the ob-
ject, index=1 the first argument, etc. So, if expr is
foo(bar), then expr[0] returns foo, and expr[1] returns
bar. Since lists of the form {...} are essentially the same
as List(...), the same accessors can be used on lists.

• Function blocks such as

While (i < 10)

[

Write(i);

i:=i+1;

];

The expression directly following the While(...) block
is added as a last argument to the While(...) call. So
While(a)b; is parsed to the internal form (While a b).

This scheme allows coding the algorithms in an almost C-like
syntax.

Strings are generally represented with quotes around them,
e.g. “this is a string”. Backslash
in a string will unconditionally add the next character to the
string, so a quote can be added with
" (a backslash-quote sequence).

1.9 Using “Macro rules” (e.g.
NFunction)

The Yacas language allows to have rules whose definitions are
generated at runtime. In other words, it is possible to write
rules (or “functions”) that, as a side-effect, will define other
rules, and those other rules will depend on some parts of the
expression the original function was applied to.

This is accomplished using functions MacroRuleBase,
MacroRule, MacroRulePattern. These functions evaluate their

arguments (including the rule name, predicate and body) and
define the rule that results from this evaluation.

Normal, “non-Macro” calls such as Rule() will not evaluate
their arguments and this is a desired feature. For example,
suppose we defined a new predicate like this,

RuleBase("IsIntegerOrString, {x});

Rule("IsIntegerOrString", 1, 1, True)

IsInteger(x) And IsString(x);

If the Rule() call were to evaluate its arguments, then the
”body” argument, IsInteger(x) And IsString(x), would be
evaluated to False since x is an atom, so we would have defined
the predicate to be always False, which is not at all what we
meant to do. For this reason, the Rule calls do not evaluate
their arguments.

Consider however the following situation. Suppose we have
a function f(arglist) where arglist is its list of arguments,
and suppose we want to define a function Nf(arglist) with
the same arguments which will evaluate f(arglist) and return
only when all arguments from arglist are numbers, and return
unevaluated Nf(arglist) otherwise. This can of course be done
by a usual rule such as

Rule("Nf", 3, 0, IsNumericList({x,y,z}))

<-- "f" @ {x,y,z};

Here IsNumericList is a predicate that checks whether all ele-
ments of a given list are numbers. (We deliberately used a Rule

call instead of an easier-to-read <-- operator to make it easier
to compare with what follows.)

However, this will have to be done for every function f sepa-
rately. We would like to define a procedure that will define Nf,
given any function f. We would like to use it like this:

NFunction("Nf", "f", {x,y,z});

After this function call we expect to be able to use the function
Nf.

Here is how we could naively try to implement NFunction

(and fail):

NFunction(new’name, old’name, arg’list) := [

MacroRuleBase(new’name, arg’list);

MacroRule(new’name, Length(arg’list), 0,

IsNumericList(arg’list)

)

new’name @ arg’list;

];

Now, this just does not do anything remotely right.
MacroRule evaluates its arguments. Since arg’list is an atom
and not a list of numbers at the time we are defining this,
IsNumericList(arg’list) will evaluate to False and the new
rule will be defined with a predicate that is always False, i.e.
it will be never applied.

The right way to figure this out is to realize that the
MacroRule call evaluates all its arguments and passes the re-
sults to a Rule call. So we need to see exactly what Rule() call
we need to produce and then we need to prepare the arguments
of MacroRule so that they evaluate to the right values. The
Rule() call we need is something like this:

Rule("actual new name", <actual # of args>, 0,

IsNumericList({actual arg list})

) "actual new name" @ {actual arg list};

Note that we need to produce expressions such as "new name"

@ arg’list and not results of evaluation of these expressions.
We can produce these expressions by using UnList(), e.g.

UnList({Atom("@"), "Sin", {x}})
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produces

"Sin" @ {x};

but not Sin(x), and

UnList({IsNumericList, {1,2,x}})

produces the expression

IsNumericList({1,2,x});

which is not further evaluated.

Here is a second version of NFunction() that works:

NFunction(new’name, old’name, arg’list) := [

MacroRuleBase(new’name, arg’list);

MacroRule(new’name, Length(arg’list), 0,

UnList({IsNumericList, arg’list})

)

UnList({Atom("@"), old’name, arg’list});

];

Note that we used Atom("@") rather than just the bare atom @

because @ is a prefix operator and prefix operator names as bare
atoms do not parse (they would be confused with applications
of a prefix operator to what follows).

Finally, there is a more concise (but less general) way of
defining NFunction() for functions with known number of ar-
guments, using the backquoting mechanism. The backquote op-
eration will first substitute variables in an expression, without
evaluating anything else, and then will evaluate the resulting
expression a second time. The code for functions of just one
variable may look like this:

N1Function(new’name, old’name) :=

‘( @new’name(x_IsNumber) <-- @old’name(x) );

This executes a little slower than the above version, because the
backquote needs to traverse the expression twice, but makes for
much more readable code.

1.10 Macro expansion

Yacas supports macro expansion (back-quoting). An expression
can be back-quoted by putting a ‘ in front of it. Within the
back-quoted expression, all atoms that have a @ in front of them
get replaced with the value of that atom (treated as a variable),
and then the resulting expression is evaluated:

In> x:=y

Out> y;

In> ‘(@x:=2)

Out> 2;

In> x

Out> y;

In> y

Out> 2;

This is useful in cases where within an expression one sub-
expression is not evaluated. For instance, transformation rules
can be built dynamically, before being declared. This is a par-
ticularly powerful feature that allows a programmer to write
programs that write programs. The idea is borrowed from Lisp.

As the above example shows, there are similarities with the
Macro... functions, that serve the same purpose for specific
expressions. For example, for the above code, one could also
have called MacroSet:

In> MacroSet(x,3)

Out> True;

In> x

Out> y;

In> y

Out> 3;

The difference is that MacroSet, and in general the Macro...

functions, are faster than their back-quoted counterparts. This
is because with back-quoting, first a new expression is built
before it is evaluated. The advantages of back-quoting are read-
ability and flexibility (the number of Macro... functions is
limited, whereas back-quoting can be used anywhere).

When an @ operator is placed in front of a function call, the
function call is replaced:

In> plus:=Add

Out> Add;

In> ‘(@plus(1,2,3))

Out> 6;

Application of pure functions is also possible (as of version
1.0.53) by using macro expansion:

In> pure:={{a,b},a+b};

Out> {{a,b},a+b};

In> ‘ @pure(2,3);

Out> 5;

Pure (nameless) functions are useful for declaring a tempo-
rary function, that has functionality depending on the current
environment it is in, or as a way to call driver functions. In
the case of drivers (interfaces to specific functionality), a vari-
able can be bound to a function to be evaluated to perform a
specific task. That way several drivers can be around, with one
bound to the variables holding the functions that will be called.

1.11 Scope of variable bindings

When setting variables or retrieving variable values, variables
are automatically bound global by default. You can explicitly
specify variables to be local to a block such as a function body;
this will make them invisible outside the block. Blocks have
the form [ statement1; statement2; ] and local variables are
declared by the Local() function.

When entering a block, a new stack frame is pushed for the
local variables; it means that the code inside a block doesn’t see
the local variables of the caller either! You can tell the inter-
preter that a function should see local variables of the calling
environment; to do this, declare

UnFence(funcname, arity)

on that function.
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Chapter 2

Evaluation of expressions

When programming in some language, it helps to have a men-
tal model of what goes on behind the scenes when evaluating
expressions, or in this case simplifying expressions.

This section aims to explain how evaluation (and simplifica-
tion) of expressions works internally, in Yacas.

2.1 The LISP heritage

Representation of expressions

Much of the inner workings is based on how LISP-like languages
are built up. When an expression is entered, or composed in
some fashion, it is converted into a prefix form much like you
get in LISP:

a+b -> (+ a b)

Sin(a) -> (Sin a)

Here the sub-expression is changed into a list of so-called
“atoms”, where the first atom is a function name of the function
to be invoked, and the atoms following are the arguments to be
passed in as parameters to that function.

Yacas has the function FullForm to show the internal repre-
sentation:

In> FullForm(a+b)

(+ a b )

Out> a+b;

In> FullForm(Sin(a))

(Sin a )

Out> Sin(a);

In> FullForm(a+b+c)

(+ (+ a b )c )

Out> a+b+c;

The internal representation is very close to what FullForm

shows on screen. a+b+c would be (+ (+ a b )c ) internally,
or:

()

|

|

+ -> () -> c

|

|

+ -> a -> b

Evaluation

An expression like described above is done in the following man-
ner: first the arguments are evaluated (if they need to be eval-
uated, Yacas can be told to not evaluate certain parameters
to functions), and only then are these arguments passed in to

the function for evaluation. They are passed in by binding local
variables to the values, so these arguments are available as local
values.

For instance, suppose we are evaluating 2*3+4. This first gets
changed to the internal representation (+ (* 2 3 )4 ). Then,
during evaluation, the top expression refers to function “+”. Its
arguments are (* 2 3) and 4. First (* 2 3) gets evaluated.
This is a function call to the function “*” with arguments 2

and 3, which evaluate to themselves. Then the function ”*”
is invoked with these arguments. The Yacas standard script
library has code that accepts numeric input and performs the
multiplication numerically, resulting in 6.

The second argument to the top-level “+” is 4, which evaluates
to itself.

Now, both arguments to the “+” function have been eval-
uated, and the results are 6 and 4. Now the ”+” function is
invoked. This function also has code in the script library to
actually perform the addition when the arguments are numeric,
so the result is 10:

In> FullForm(Hold(2*3+4))

(+ (* 2 3 )4 )

Out> 2*3+4;

In> 2*3+4

Out> 10;

Note that in Yacas, the script language does not define a
“+” function in the core. This and other functions are all imple-
mented in the script library. The feature “when the arguments
to “+” are numeric, perform the numeric addition” is considered
to be a “policy” which should be configurable. It should not be
a part of the core language.

It is surprisingly difficult to keep in mind that evaluation is
bottom up, and that arguments are evaluated before the func-
tion call is evaluated. In some sense, you might feel that the
evaluation of the arguments is part of evaluation of the func-
tion. It is not. Arguments are evaluated before the function
gets called.

Suppose we define the function f, which adds two numbers,
and traces itself, as:

In> f(a,b):= \

In> [\

In> Local(result);\

In> Echo("Enter f with arguments ",a,b);\

In> result:=a+b;\

In> Echo("Leave f with result ",result);\

In> result;\

In> ];

Out> True;

Then the following interaction shows this principle:
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In> f(f(2,3),4)

Enter f with arguments 2 3

Leave f with result 5

Enter f with arguments 5 4

Leave f with result 9

Out> 9;

The first Enter/Leave combination is for f(2,3), and only
then is the outer call to f entered.

This has important consequences for the way Yacas simplifies
expressions: the expression trees are traversed bottom up, as the
lowest parts of the expression trees are simplified first, before
being passed along up to the calling function.

2.2 Yacas-specific extensions for
CAS implementations

Yacas has a few language features specifically designed for use
when implementing a CAS.

The transformation rules

Working with transformation rules is explained in the introduc-
tion and tutorial book. This section mainly deals with how
Yacas works with transformation rules under the hood.

A transformation rule consists of two parts: a condition that
an expression should match, and a result to be substituted for
the expression if the condition holds. The most common way to
specify a condition is a pattern to be matched to an expression.

A pattern is again simply an expression, stored in internal
format:

In> FullForm(a_IsInteger+b_IsInteger*(_x))

(+ (_ a IsInteger )(* (_ b IsInteger )(_ x )))

Out> a _IsInteger+b _IsInteger*_x;

Yacas maintains structures of transformation rules, and tries
to match them to the expression being evaluated. It first tries
to match the structure of the pattern to the expression. In the
above case, it tries to match to a+b*x. If this matches, local
variables a, b and x are declared and assigned the sub-trees of
the expression being matched. Then the predicates are tried
on each of them: in this case, IsInteger(a) and IsInteger(b)

should both return True.
Not shown in the above case, are post-predicates. They get

evaluated afterwards. This post-predicate must also evaluate to
True. If the structure of the expression matches the structure
of the pattern, and all predicates evaluate to True, the pattern
matches and the transformation rule is applied, meaning the
right hand side is evaluated, with the local variables mentioned
in the pattern assigned. This evaluation means all transforma-
tion rules are re-applied to the right-hand side of the expression.

Note that the arguments to a function are evaluated first,
and only then is the function itself called. So the arguments
are evaluated, and then the transformation rules applied on it.
The main function defines its parameters also, so these get as-
signed to local variables also, before trying the patterns with
their associated local variables.

Here is an example making the fact that the names in a pat-
tern are local variables more explicit:

In> f1(_x,_a) <-- x+a

Out> True;

In> f2(_x,_a) <-- [Local(a); x+a;];

Out> True;

In> f1(1,2)

Out> 3;

In> f2(1,2)

Out> a+1;

Using different rules in different cases

In a lot of cases, the algorithm to be invoked depends on the
type of the arguments. Or the result depends on the form of the
input expression. This results in the typical “case” or “switch”
statement, where the code to evaluate to determine the result
depends on the form of the input expression, or the type of the
arguments, or some other conditions.

Yacas allows to define several transformation rules for one
and the same function, if the rules are to be applied under dif-
ferent conditions.

Suppose the function f is defined, a factorial function:

10 # f(0) <-- 1;

20 # f(n_IsPositiveInteger) <-- n*f(n-1);

Then interaction can look like:

In> f(3)

Out> 6;

In> f(a)

Out> f(a);

If the left hand side is matched by the expression being con-
sidered, then the right hand side is evaluated. A subtle but
important thing to note is that this means that the whole body
of transformation rules is thus re-applied to the right-hand side
of the <-- operator.

Evaluation goes bottom-up, evaluating (simplifying) the low-
est parts of a tree first, but for a tree that matches a transfor-
mation rule, the substitution essentially means return the result
of evaluating the right-hand side. Transformation rules are re-
applied, on the right hand side of the transformation rule, and
the original expression can be thought of as been substituted by
the result of evaluating this right-hand side, which is supposed
to be a “simpler” expression, or a result closer to what the user
wants.

Internally, the function f is built up to resemble the following
pseudo-code:

f(n)

{

if (n = 1)

return 1;

else if (IsPositiveInteger(n))

return n*f(n-1);

else return f(n) unevaluated;

}

The transformation rules are thus combined into one big
statement that gets executed, with each transformation rule be-
ing a if-clause in the statement to be evaluated. Transformation
rules can be spread over different files, and combined in func-
tional groups. This adds to the readability. The alternative is
to write the full body of each function as one big routine, which
becomes harder to maintain as the function becomes larger and
larger, and hard or impossible to extend.

One nice feature is that functionality is easy to extend with-
out modifying the original source code:

In> Ln(x*y)

Out> Ln(x*y);

In> Ln(_x*_y) <-- Ln(x) + Ln(y)

Out> True;

In> Ln(x*y)

Out> Ln(x)+Ln(y);
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This is generally not advisable, due to the fact that it alters
the behavior of the entire system. But it can be useful in some
instances. For instance, when introducing a new function f(x),
one can decide to define a derivative explicitly, and a way to
simplify it numerically:

In> f(_x)_InNumericMode() <-- Exp(x)

Out> True;

In> (Deriv(_x)f(_y)) <-- f(y)*(Deriv(x)y);

Out> True;

In> f(2)

Out> f(2);

In> N(f(2))

Out> 7.3890560989;

In> Exp(2)

Out> Exp(2);

In> N(Exp(2))

Out> 7.3890560989;

In> D(x)f(a*x)

Out> f(a*x)*a;

The “Evaluation is Simplification” hack

One of the ideas behind the Yacas scripting language is that
evaluation is used for simplifying expressions. One consequence
of this is that objects can be returned unevaluated when they
can not be simplified further. This happens to variables that
are not assigned, functions that are not defined, or function
invocations where the arguments passed in as parameters are
not actually handled by any code in the scripts. An integral that
can not be performed by Yacas should be returned unevaluated:

In> 2+3

Out> 5;

In> a+b

Out> a+b;

In> Sin(a)

Out> Sin(a);

In> Sin(0)

Out> 0;

In> Integrate(x)Ln(x)

Out> x*Ln(x)-x;

In> Integrate(x)Ln(Sin(x))

Out> Integrate(x)Ln(Sin(x));

In> a!

Out> a!;

In> 3!

Out> 6;

Other languages usually do not allow evaluation of unbound
variables, or undefined functions. In Yacas, these are inter-
preted as some yet undefined global variables or functions, and
returned unevaluated.

2.3 Destructive operations

Yacas tries to keep as few copies of objects in memory as possi-
ble. Thus when assigning the value of one variable to another, a
reference is copied, and both variables refer to the same memory,
physically. This is relevant for programming; for example, one
should use FlatCopy to actually make a new copy of an object.
Another feature relevant to reference semantics is “destructive
operations”; these are functions that modify their arguments
rather than work on a copy. Destructive operations on lists are
generally recognized because their name starts with “Destruc-
tive”, e.g. DestructiveDelete. One other destructive operation
is assignment of a list element through list[index] := ....

Some examples to illustrate destructive operations on lists:

In> x1:={a,b,c}

Out> {a,b,c};

A list x1 is created.

In> FullForm(x1)

(List a b c )

Out> {a,b,c};

In> x2:=z:x1

Out> {z,a,b,c};

A new list x2 is z appended to x1. The : operation creates a
copy of x1 before appending, so x1 is unchanged by this.

In> FullForm(x2)

(List z a b c )

Out> {z,a,b,c};

In> x2[1]:=y

Out> True;

We have modified the first element of x2, but x1 is still the
same.

In> x2

Out> {y,a,b,c};

In> x1

Out> {a,b,c};

In> x2[2]:=A

Out> True;

We have modified the second element of x2, but x1 is still the
same.

In> x2

Out> {y,A,b,c};

In> x1

Out> {a,b,c};

In> x2:=x1

Out> {A,b,c};

Now x2 and x1 refer to the same list.

In> x2[1]:=A

Out> True;

We have modified the first element of x2, and x1 is also modified.

In> x2

Out> {A,b,c};

In> x1

Out> {A,b,c};

A programmer should always be cautious when dealing with
destructive operations. Sometimes it is not desirable to change
the original expression. The language deals with it this way
because of performance considerations. Operations can be made
non-destructive by using FlatCopy:

In> x1:={a,b,c}

Out> {a,b,c};

In> DestructiveReverse(x1)

Out> {c,b,a};

In> x1

Out> {a};

In> x1:={a,b,c}

Out> {a,b,c};

In> DestructiveReverse(FlatCopy(x1))

Out> {c,b,a};

In> x1

Out> {a,b,c};

FlatCopy copies the elements of an expression only at the top
level of nesting. This means that if a list contains sub-lists, they
are not copied, but references to them are copied instead:

10



In> dict1:={}

Out> {};

In> dict1["name"]:="John";

Out> True;

In> dict2:=FlatCopy(dict1)

Out> {{"name","John"}};

In> dict2["name"]:="Mark";

Out> True;

In> dict1

Out> {{"name","Mark"}};

A workaround for this is to use Subst to copy the entire tree:

In> dict1:={}

Out> {};

In> dict1["name"]:="John";

Out> True;

In> dict2:=Subst(a,a)(dict1)

Out> {{"name","John"}};

In> dict2["name"]:="Mark";

Out> True;

In> dict1

Out> {{"name","John"}};

In> dict2

Out> {{"name","Mark"}};
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Chapter 3

Coding style

3.1 Introduction

This chapter intends to describe the coding style and conven-
tions applied in Yacas in order to make sure the engine always
returns the correct result. This is an attempt at fending off
such errors by combining rule-based programming with a clear
coding style which should make help avoid these mistakes.

3.2 Interactions of rules and types

One unfortunate disadvantage of rule-based programming is
that rules can sometimes cooperate in unwanted ways.

One example of how rules can produce unwanted results is the
rule a*0 <-- 0. This would always seem to be true. However,
when a is a vector, e.g. a:={b,c,d}, then a*0 should actually
return {0,0,0}, that is, a zero vector. The rule a*0 <-- 0 ac-
tually changes the type of the expression from a vector to an
integer! This can have severe consequences when other func-
tions using this expressions as an argument expect a vector, or
even worse, have a definition of how to work on vectors, and a
different one for working on numbers.

When writing rules for an operator, it is assumed that the op-
erator working on arguments, e.g. Cos or *, will always have the
same properties regardless of the arguments. The Taylor series
expansion of cos a is the same regardless of whether a is a real
number, complex number or even a matrix. Certain trigono-
metric identities should hold for the Cos function, regardless of
the type of its argument.

If a function is defined which does not adhere to these rules
when applied to another type, a different function name should
be used, to avoid confusion.

By default, if a variable has not been bound yet, it is assumed
to be a number. If it is in fact a more complex object, e.g. a
vector, then you can declare it to be an “incomplete type” vec-
tor, using Object("IsVector",x) instead of x. This expression
will evaluate to x if and only if x is a vector at that moment
of evaluation. Otherwise it returns unevaluated, and thus stays
an incomplete type.

So this means the type of a variable is numeric unless oth-
erwise stated by the user, using the “Object” command. No
rules should ever work on incomplete types. It is just meant for
delayed simplification.

The topic of implicit type of an object is important, since
many rules need to assume something about their argument
types.

3.3 Ordering of rules

The implementor of a rule set can specify the order in which
rules should be tried. This can be used to let the engine try more

specific rules (those involving more elements in the pattern)
before trying less specific rules. Ordering of rules can be also
explicitly given by precedence numbers. The Yacas engine will
split the expression into subexpressions, and will try to apply all
matching rules to a given subexpression in order of precedence.

A rule with precedence 100 is defined by the syntax such as

100 # f(_x + _y) <-- f(x) + f(y);

The problem mentioned above with a rule for vectors and
scalars could be solved by making two rules:

1. ab (if b is a vector and a is a number) <-- return vector of
each component multiplied by a.

2. a · 0 <-- 0

So vector multiplication would be tried first.
The ordering of the precedence of the rules in the standard

math scripts is currently:

• 50-60: Args are numbers: directly calculate. These are
put in the beginning, so they are tried first. This is useful
for quickly obtaining numeric results if all the arguments
are numeric already, and symbolic transformations are not
necessary.

• 100-199: tautologies. Transformations that do not change
the type of the argument, and are always true.

• 200-399: type-specific transformations. Transformations
for specific types of objects.

• 400-599: transformations on scalars (variables are assumed
to be scalars). Meaning transformations that can poten-
tially change the type of an argument.

3.4 Writing new library functions

When you implement new library functions, you need to make
your new code compatible and consistent with the rest of the
library. Here are some relevant considerations.

To evaluate or not to evaluate

Currently, a general policy in the library is that functions do
nothing unless their arguments actually allow something to be
evaluated. For instance, if the function expects a variable name
but instead gets a list, or expects a list but instead gets a string,
in most cases it seems to be a good idea to do nothing and
return unevaluated. The unevaluated expression will propagate
and will be easy to spot. Most functions can accomplish this by
using type-checking predicates such as IsInteger in rules.

When dealing with numbers, Yacas tries to maintain exact
answers as much as possible and evaluate to floating-point only
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when explicitly told so (using N()). The general evaluation
strategy for numerical functions such as Sin or Gamma is the
following:

1. If InNumericMode() returns True and the arguments are
numbers (perhaps complex numbers), the function should
evaluate its result in floating-point to current precision.

2. Otherwise, if the arguments are such that the result can
be calculated exactly, it should be evaluated and returned.
E.g. Sin(Pi/2) returns 1.

3. Otherwise the function should return unevaluated (but
usually with its arguments evaluated).

Here are some examples of this behavior:

In> Sin(3)

Out> Sin(3);

In> Gamma(8)

Out> 5040;

In> Gamma(-11/2)

Out> (64*Sqrt(Pi))/10395;

In> Gamma(8/7)

Out> Gamma(8/7);

In> N(Gamma(8/7))

Out> 0.9354375629;

In> N(Gamma(8/7+x))

Out> Gamma(x+1.1428571428);

In> Gamma(12/6+x)

Out> Gamma(x+2);

To implement this behavior, Gamma and other mathematical
functions usually have two variants: the “symbolic” one and
the “numerical” one. For instance, there are Sin and MathSin,
Ln and Internal’LnNum, Gamma and Internal’GammaNum. (Here
MathSin happens to be a core function but it is not essential.)
The ”numerical” functions always evaluate to floating-point re-
sults. The “symbolic” function serves as a front-end; it evaluates
when the result can be expressed exactly, or calls the “numer-
ical” function if InNumericMode() returns True, and otherwise
returns unevaluated.

The “symbolic” function usually has multiple rules while the
“numerical” function is usually just one large block of number-
crunching code.

Using N() and InNumericMode() in scripts

As a rule, N() should be avoided in code that implements ba-
sic numerical algorithms. This is because N() itself is imple-
mented in the library and it may need to use some of these
algorithms. Arbitrary-precision math can be handled by core
functions such as MathDivide, MathSin and so on, without us-
ing N(). For example, if your code needs to evaluate

√
π to

many digits as an intermediate result, it is better to write
MathSqrt(Internal’Pi()) than N(Sqrt(Pi)) because it makes
for faster, more reliable code.

Using Builtin’Precision’Set()

The usual assumption is that numerical functions will evaluate
floating-point results to the currently set precision. For inter-
mediate calculations, a higher working precision is sometimes
needed. In this case, your function should set the precision back
to the original value at the end of the calculation and round off
the result.

Using verbose mode

For routines using complicated algorithms, or when evaluation
takes a long time, it is usually helpful to print some diagnostic
information, so that the user can at least watch some progress.
The current convention is that if InVerboseMode() returns True,
functions may print diagnostic information. (But do not print
too much!). Verbose mode is turned on by using the function
V(expression). The expression is evaluated in verbose mode.

Procedural programming or rule-based pro-
gramming?

Two considerations are relevant to this decision. First, whether
to use multiple rules with predicates or one rule with multiple
If()s. Consider the following sample code for the “double fac-
torial” function n!! ≡ n (n− 2) ... written using predicates and
rules:

1# 0 !! <-- 1;

1# 1 !! <-- 1;

2# (n_IsEven) !! <-- 2^(n/2)*n!;

3# (n_IsOdd) !! <-- n*(n-2)!!;

and an equivalent code with one rule:

n!! := If(n=0 Or n=1, 1,

If(IsEven(n), 2^(n/2)*n!,

If(IsOdd(n), n*(n-2)!!, Hold(n!!)))

);

(Note: This is not the way n!! is implemented in the library.)
The first version is a lot more clear. Yacas is very quick in rule
matching and evaluation of predicates, so the first version is
(marginally) faster. So it seems better to write a few rules with
predicates than one rule with multiple If() statements.

The second question is whether to use recursion or loops.
Recursion makes code more elegant but it is slower and lim-
ited in depth. Currently the default recursion depth of 1000
is enough for most casual calculations and yet catches infinite
recursion errors relatively quickly. Because of clearer code, it
seems better to use recursion in situations where the number of
list elements will never become large. In numerical applications,
such as evaluation of Taylor series, recursion usually does not
pay off.

3.5 Reporting errors

Errors occurring because of invalid argument types should be
reported only if absolutely necessary. (In the future there may
be a static type checker implemented that will make explicit
checking unnecessary.)

Errors of invalid values, e.g. a negative argument of real log-
arithm function, or a malformed list, mean that a human has
probably made a mistake, so the errors need to be reported.
“Internal errors”, i.e. program bugs, certainly need to be re-
ported.

There are currently two facilities for reporting errors: a
“hard” one and a “soft” one.

The “hard” error reporting facility is the function Check. For
example, if x=-1, then

Check(x>0,"bad x");

will immediately halt the execution of a Yacas script and print
the error messsage. This is implemented as a C++ exception. A
drawback of this mechanism is that the Yacas stack unwinding
is not performed by the Yacas interpreter, so global variables
such as InNumericMode(), Verbose, Builtin’Precision’Set()
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may keep the intermediate values they had been assigned just
before the error occurred. Also, sometimes it is better for the
program to be able to catch the error and continue.

The “soft” error reporting is provided by the functions Assert
and IsError, e.g.

Assert("domain", x) x>0;

If(IsError("domain"), ...);

The error will be reported but execution will continue normally
until some other function “handles” the error (prints the er-
ror message or does something else appropriate for that error).
Here the string "domain" is the ”error type” and x will be the
information object for this error. The error object can be any
expression, but it is probably a good idea to choose a short and
descriptive string for the error type.

The function GetErrorTableau() returns an associative list
that accumulates all reported error objects. When errors are
“handled”, their objects should be removed from the list. The
utility function DumpErrors() is a simple error handler that
prints all errors and clears the list. Other handlers are GetError
and ClearError. These functions may be used to handle errors
when it is safe to do so.

The “soft” error reporting facility is safer and more flexible
than the “hard” facility. However, the disadvantage is that er-
rors are not reported right away and pointless calculations may
continue for a while until an error is handled.
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Chapter 4

Advanced example 1: parsing expressions
(CForm)

In this chapter we show how Yacas represents expressions
and how one can build functions that work on various types
of expressions. Our specific example will be CForm(), a stan-
dard library function that converts Yacas expressions into C or
C++ code. Although the input format of Yacas expressions is
already very close to C and perhaps could be converted to C by
means of an external text filter, it is instructive to understand
how to use Yacas to parse its own expressions and produce the
corresponding C code. Here we shall only design the core mech-
anism of CForm() and build a limited version that handles only
expressions using the four arithmetic actions.

4.1 Recursive parsing of expression
trees

As we have seen in the tutorial, Yacas represents all expressions
as trees, or equivalently, as lists of lists. For example, the ex-
pression “a+b+c+d+e” is for Yacas a tree of depth 4 that could
be visualized as

"+"

a "+"

b "+"

c "+"

d e

or as a nested list: ("+" a ("+" b ("+" c ("+" d e)))).
Complicated expressions are thus built from simple ones in a

general and flexible way. If we want a function that acts on sums
of any number of terms, we only need to define this function on
a single atom and on a sum of two terms, and the Yacas engine
will recursively perform the action on the entire tree.

So our first try is to define rules for transforming an atom
and for transforming sums and products. The result of CForm()
will always be a string. We can use recursion like this:

In> 100 # CForm(a_IsAtom) <-- String(a);

Out> True;

In> 100 # CForm(_a + _b) <-- CForm(a) : \

" + " : CForm(b);

Out> True;

In> 100 # CForm(_a * _b) <-- CForm(a) : \

" * " : CForm(b);

Out> True;

We used the string concatenation operator “:” and we added
spaces around the binary operators for clarity. All rules have
the same precedence 100 because there are no conflicts in rule
ordering so far: these rules apply in mutually exclusive cases.
Let’s try converting some simple expressions now:

In> CForm(a+b*c);

Out> "a + b * c";

In> CForm(a+b*c*d+e+1+f);

Out> "a + b * c * d + e + 1 + f";

With only three rules, we were able to process even some
complicated expressions. How did it work? We could illustrate
the steps Yacas went through when simplifying CForm(a+b*c)

roughly like this:

CForm(a+b*c)

... apply 2nd rule

CForm(a) : " + " : CForm(b*c)

... apply 1st rule and 3rd rule

"a" : " + " : CForm(b) : " * " : CForm(c)

... apply 1st rule

"a" : " + " : "b" : " * " : "c"

... concatenate strings

"a + b * c"

4.2 Handling precedence of infix
operations

It seems that recursion will do all the work for us. The power
of recursion is indeed great and extensive use of recursion is
built into the design of Yacas. We might now add rules for
more operators, for example, the unary addition, subtraction
and division:

100 # CForm(+ _a) <-- "+ " : CForm(a);

100 # CForm(- _a) <-- "- " : CForm(a);

100 # CForm(_a - _b) <-- CForm(a) : " - "

: CForm(b);

100 # CForm(_a / _b) <-- CForm(a) : " / "

: CForm(b);

However, soon we find that we forgot about operator prece-
dence. Our simple-minded CForm() gives wrong C code for ex-
pressions like this:

In> CForm( (a+b) * c );

Out> "a + b * c";

We need to get something like “(a+b)*c” in this case. How
would we add a rule to insert parentheses around subexpres-
sions? A simple way out would be to put parentheses around
every subexpression, replacing our rules by something like this:

100 # CForm(_a + _b) <-- "(" : CForm(a)

: " + " : CForm(b) : ")";

100 # CForm(- _a) <-- "(- " : CForm(a)

: ")";
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and so on. This will always produce correct C code, e.g. in our
case “((a+b)*c)“, but generally the output will be full of unnec-
essary parentheses. It is instructive to find a better solution.

We could improve the situation by inserting parentheses only
if the higher-order expression requires them; for this to work, we
need to make a call such as CForm(a+b) aware that the envelop-
ing expression has a multiplication by c around the addition
a+b. This can be implemented by passing an extra argument
to CForm() that will indicate the precedence of the enveloping
operation. A compound expression that uses an infix operator
must be bracketed if the precedence of that infix operator is
higher than the precedence of the enveloping infix operation.

We shall define an auxiliary function also named “CForm”
but with a second argument, the precedence of the enveloping
infix operation. If there is no enveloping operation, we shall set
the precedence to a large number, e.g. 60000, to indicate that
no parentheses should be inserted around the whole expression.
The new “CForm(expr, precedence)“ will handle two cases: ei-
ther parentheses are necessary, or unnecessary. For clarity we
shall implement these cases in two separate rules. The initial
call to “CForm(expr)“ will be delegated to “CForm(expr, prece-
dence)“.

The precedence values of infix operators such as “+” and ”*”
are defined in the Yacas library but may change in a future ver-
sion. Therefore, we shall not hard-code these precedence val-
ues but instead use the function OpPrecedence() to determine
them. The new rules for the ”+” operation could look like this:

PlusPrec := OpPrecedence("+");

100 # CForm(_expr) <-- CForm(expr, 60000);

100 # CForm(_a + _b, _prec)_(PlusPrec>prec)

<-- "(" : CForm(a, PlusPrec) : " + "

: CForm(b, PlusPrec) : ")";

120 # CForm(_a + _b, _prec) <--

CForm(a, PlusPrec) : " + "

: CForm(b, PlusPrec);

and so on. We omitted the predicate for the last rule because
it has a later precedence than the preceding rule.

The way we wrote these rules is unnecessarily repetitive but
straightforward and it illustrates the central ideas of expression
processing in Yacas. The standard library implements CForm()

essentially in this way. In addition the library implementation
supports standard mathematical functions, arrays and so on,
and is somewhat better organized to allow easier extensions and
avoid repetition of code.
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Chapter 5

Yacas programming pitfalls

No programming language is without programming pitfalls,
and Yacas has its fair share of pitfalls.

5.1 All rules are global

All rules are global, and a consequence is that rules can clash
or silently shadow each other, if the user defines two rules with
the same patterns and predicates but different bodies.

For example:

In> f(0) <-- 1

Out> True;

In> f(x_IsConstant) <-- Sin(x)/x

Out> True;

This can happen in practice, if care is not taken. Here
two transformation rules are defined which both have the same
precedence (since their precedence was not explicitly set). In
that case Yacas gets to decide which one to try first. Such
problems can also occur where one transformation rule (possi-
bly defined in some other file) has a wrong precedence, and thus
masks another transformation rule. It is necessary to think of a
scheme for assigning precedences first. In many cases, the order
in which transformation rules are applied is important.

In the above example, because Yacas gets to decide which
rule to try first, it is possible that f(0) invokes the second rule,
which would then mask the first so the first rule is never called.
Indeed, in Yacas version 1.0.51,

In> f(0)

Out> Undefined;

The order the rules are applied in is undefined if the prece-
dences are the same. The precedences should only be the same
if order does not matter. This is the case if, for instance, the
two rules apply to different argument patters that could not
possibly mask each other.

The solution could have been either:

In> 10 # f(0) <-- 1

Out> True;

In> 20 # f(x_IsConstant) <-- Sin(x)/x

Out> True;

In> f(0)

Out> 1;

or

In> f(0) <-- 1

Out> True;

In> f(x_IsConstant)_(x != 0) <-- Sin(x)/x

Out> True;

In> f(0)

Out> 1;

So either the rules should have distinct precedences, or they
should have mutually exclusive predicates, so that they do not
collide.

5.2 Objects that look like functions

An expression that looks like a “function”, for example
AbcDef(x,y), is in fact either a call to a “core function” or
to a “user function”, and there is a huge difference between the
behaviors. Core functions immediately evaluate to something,
while user functions are really just symbols to which evaluation
rules may or may not be applied.

For example:

In> a+b

Out> a+b;

In> 2+3

Out> 5;

In> MathAdd(a,b)

In function "MathAdd" :

bad argument number 1 (counting from 1)

The offending argument a evaluated to a

CommandLine(1) : Invalid argument

In> MathAdd(2,3)

Out> 5;

The + operator will return the object unsimplified if the argu-
ments are not numeric. The + operator is defined in the standard
scripts. MathAdd, however, is a function defined in the ”core” to
performs the numeric addition. It can only do this if the argu-
ments are numeric and it fails on symbolic arguments. (The +

operator calls MathAdd after it has verified that the arguments
passed to it are numeric.)

A core function such as MathAdd can never return unevalu-
ated, but an operator such as ”+” is a ”user function” which
might or might not be evaluated to something.

A user function does not have to be defined before it is used.
A consequence of this is that a typo in a function name or a
variable name will always go unnoticed. For example:

In> f(x_IsInteger,y_IsInteger) <-- Mathadd(x,y)

Out> True;

In> f(1,2)

Out> Mathadd(1,2);

Here we made a typo: we should have written MathAdd, but
wrote Mathadd instead. Yacas happily assumed that we mean
a new and (so far) undefined ”user function” Mathadd and re-
turned the expression unevaluated.

In the above example it was easy to spot the error. But this
feature becomes more dangerous when it this mistake is made in
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a part of some procedure. A call that should have been made to
an internal function, if a typo was made, passes silently without
error and returns unevaluated. The real problem occurs if we
meant to call a function that has side-effects and we not use its
return value. In this case we shall not immediately find that
the function was not evaluated, but instead we shall encounter
a mysterious bug later.

5.3 Guessing when arguments are
evaluated and when not

If your new function does not work as expected, there is a good
chance that it happened because you did not expect some ex-
pression which is an argument to be passed to a function to be
evaluated when it is in fact evaluated, or vice versa.

For example:

In> p:=Sin(x)

Out> Sin(x);

In> D(x)p

Out> Cos(x);

In> y:=x

Out> x;

In> D(y)p

Out> 0;

Here the first argument to the differentiation function is not
evaluated, so y is not evaluated to x, and D(y)p is indeed 0.

The confusing effect of HoldArg

The problem of distinguishing evaluated and unevaluated ob-
jects becomes worse when we need to create a function that
does not evaluate its arguments.

Since in Yacas evaluation starts from the bottom of the ex-
pression tree, all “user functions” will appear to evaluate their
arguments by default. But sometimes it is convenient to pro-
hibit evaluation of a particular argument (using HoldArg or
HoldArgNr).

For example, suppose we need a function A(x,y) that, as a
side-effect, assigns the variable x to the sum of x and y. This
function will be called when x already has some value, so clearly
the argument x in A(x,y) should be unevaluated. It is possible
to make this argument unevaluated by putting Hold() on it and
always calling A(Hold(x), y), but this is not very convenient
and easy to forget. It would be better to define A so that it
always keeps its first argument unevaluated.

If we define a rule base for A and declare HoldArg,

Function() A(x,y);

HoldArg("A", x);

then we shall encounter a difficulty when working with the ar-
gument x inside of a rule body for A. For instance, the simple-
minded implementation

A(_x, _y) <-- (x := x+y);

does not work:

In> [ a:=1; b:=2; A(a,b);]

Out> a+2;

In other words, the x inside the body of A(x,y) did not eval-
uate to 1 when we called the function :=. Instead, it was left
unevaluated as the atom x on the left hand side of :=, since
:= does not evaluate its left argument. It however evaluates its
right argument, so the y argument was evaluated to 2 and the
x+y became a+2.

The evaluation of x in the body of A(x,y) was prevented by
the HoldArg declaration. So in the body, x will just be the atom
x, unless it is evaluated again. If you pass x to other functions,
they will just get the atom x. Thus in our example, we passed
x to the function :=, thinking that it will get a, but it got an
unevaluated atom x on the left side and proceeded with that.

We need an explicit evaluation of x in this case. It can be
performed using Eval, or with backquoting, or by using a core
function that evaluates its argument. Here is some code that
illustrates these three possibilities:

A(_x, _y) <-- [ Local(z); z:=Eval(x); z:=z+y; ]

(using explicit evaluation) or

A(_x, _y) <-- ‘(@x := @x + y);

(using backquoting) or

A(_x, _y) <-- MacroSet(x, x+y);

(using a core function MacroSet that evaluates its first argu-
ment).

However, beware of a clash of names when using explicit eval-
uations (as explained above). In other words, the function A as
defined above will not work correctly if we give it a variable also
named x. The LocalSymbols call should be used to get around
this problem.

Another caveat is that when we call another function that
does not evaluate its argument, we need to substitute an explic-
itly evaluated x into it. A frequent case is the following: suppose
we have a function B(x,y) that does not evaluate x, and we need
to write an interface function B(x) which will just call B(x,0).
We should use an explicit evaluation of x to accomplish this, for
example

B(_x) <-- ‘B(@x,0);

or

B(_x) <-- B @ {x, 0};

Otherwise B(x,y) will not get the correct value of its first pa-
rameter x.

Special behavior of Hold, UnList and Eval

When an expression is evaluated, all matching rules are applied
to it repeatedly until no more rules match. Thus an expres-
sion is “completely” evaluated. There are, however, two cases
when recursive application of rules is stopped at a certain point,
leaving an expression not “completely” evaluated:

1. The expression which is the result of a call to a Yacas core
function is not evaluated further, even if some rules apply
to it.

2. The expression is a variable that has a value assigned to it;
for example, the variable x might have the expression y+1

as the value. That value is not evaluated again, so even if
y has been assigned another value, say, y=2 a Yacas expres-
sion such as 2*x+1 will evaluate to 2*(y+1)+1 and not to 7.
Thus, a variable can have some unevaluated expression as
its value and the expression will not be re-evaluated when
the variable is used.

The first possibility is mostly without consequence because
almost all core functions return a simple atom that does not re-
quire further evaluation. However, there are two core functions
that can return a complicated expression: Hold and UnList.
Thus, these functions can produce arbitrarily complicated Ya-
cas expressions that will be left unevaluated. For example, the
result of

UnList({Sin, 0})
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is the same as the result of

Hold(Sin(0))

and is the unevaluated expression Sin(0) rather than 0.
Typically you want to use UnList because you need to con-

struct a function call out of some objects that you have. But
you need to call Eval(UnList(...)) to actually evaluate this
function call. For example:

In> UnList({Sin, 0})

Out> Sin(0);

In> Eval(UnList({Sin, 0}))

Out> 0;

In effect, evaluation can be stopped with Hold or UnList and
can be explicitly restarted by using Eval. If several levels of un-
evaluation are used, such as Hold(Hold(...)), then the same
number of Eval calls will be needed to fully evaluate an expres-
sion.

In> a:=Hold(Sin(0))

Out> Sin(0);

In> b:=Hold(a)

Out> a;

In> c:=Hold(b)

Out> b;

In> Eval(c)

Out> a;

In> Eval(Eval(c))

Out> Sin(0);

In> Eval(Eval(Eval(c)))

Out> 0;

A function FullEval can be defined for ”complete” evaluation
of expressions, as follows:

LocalSymbols(x,y)

[

FullEval(_x) <-- FullEval(x,Eval(x));

10 # FullEval(_x,_x) <-- x;

20 # FullEval(_x,_y) <-- FullEval(y,Eval(y));

];

Then the example above will be concluded with:

In> FullEval(c);

Out> 0;

Correctness of parameters to functions is
not checked

Because Yacas does not enforce type checking of arguments, it
is possible to call functions with invalid arguments. The default
way functions in Yacas should deal with situations where an
action can not be performed, is to return the expression uneval-
uated. A function should know when it is failing to perform a
task. The typical symptoms are errors that seem obscure, but
just mean the function called should have checked that it can
perform the action on the object.

For example:

In> 10 # f(0) <-- 1;

Out> True;

In> 20 # f(_n) <-- n*f(n-1);

Out> True;

In> f(3)

Out> 6;

In> f(1.3)

CommandLine(1): Max evaluation stack depth reached.

Here, the function f is defined to be a factorial function, but
the function fails to check that its argument is a positive inte-
ger, and thus exhausts the stack when called with a non-integer
argument. A better way would be to write

In> 20 # f(n_IsPositiveInteger) <-- n*f(n-1);

Then the function would have returned unevaluated when
passed a non-integer or a symbolic expression.

5.4 Evaluating variables in the
wrong scope

There is a subtle problem that occurs when Eval is used in a
function, combined with local variables. The following example
perhaps illustrates it:

In> f1(x):=[Local(a);a:=2;Eval(x);];

Out> True;

In> f1(3)

Out> 3;

In> f1(a)

Out> 2;

Here the last call should have returned a, but it returned 2,
because x was assigned the value a, and a was assigned locally
the value of 2, and x gets re-evaluated. This problem occurs
when the expression being evaluated contains variables which
are also local variables in the function body. The solution is to
use the LocalSymbols function for all local variables defined in
the body.

The following illustrates this:

In> f2(x):=LocalSymbols(a)[Local(a);a:=2;Eval(x);];

Out> True;

In> f1(3)

Out> 3;

In> f2(a)

Out> a;

Here f2 returns the correct result. x was assigned the value a,
but the a within the function body is made distinctly different
from the one referred to by x (which, in a sense, refers to a
global a), by using LocalSymbols.

This problem generally occurs when defining functions that
re-evaluate one of its arguments, typically functions that per-
form a loop of some sort, evaluating a body at each iteration.
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Chapter 6

Debugging in Yacas

6.1 Introduction

When writing a code segment, it is generally a good idea to
separate the problem into many small functions. Not only can
you then reuse these functions on other problems, but it makes
debugging easier too.

For debugging a faulty function, in addition to the usual
trial-and-error method and the “print everything” method, Ya-
cas offers some trace facilities. You can try to trace applica-
tions of rules during evaluation of the function (TraceRule(),
TraceExp()) or see the stack after an error has occurred
(TraceStack()).

There is also an interactive debugger, which shall be intro-
duced in this chapter.

Finally, you may want to run a debugging version of Ya-
cas. This version of the executable maintains more information
about the operations it performs, and can report on this.

This chapter will start with the interactive debugger, as it
is the easiest and most useful feature to use, and then proceed
to explain the trace and profiling facilities. Finally, the inter-
nal workings of the debugger will be explained. It is highly
customizable (in fact, most of the debugging code is written in
Yacas itself), so for bugs that are really difficult to track one
can write custom code to track it.

6.2 The trace facilities

The trace facilities are:

1. TraceExp : traces the full expression, showing all calls to
user- or system-defined functions, their arguments, and the
return values. For complex functions this can become a
long list of function calls.

2. TraceRule : traces one single user-defined function (rule).
It shows each invocation, the arguments passed in, and the
returned values. This is useful for tracking the behavior of
that function in the environment it is intended to be used
in.

3. TraceStack : shows a few last function calls before an error
has occurred.

4. Profile : report on statistics (number of times functions
were called, etc.). Useful for performance analysis.

The online manual pages (e.g. ?TraceStack) have more in-
formation about the use of these functions.

An example invocation of TraceRule is

In> TraceRule(x+y)2+3*5+4;

Which should then show something to the effect of

TrEnter(2+3*5+4);

TrEnter(2+3*5);

TrArg(2,2);

TrArg(3*5,15);

TrLeave(2+3*5,17);

TrArg(2+3*5,17);

TrArg(4,4);

TrLeave(2+3*5+4,21);

Out> 21;
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Chapter 7

Custom evaluation facilities

Yacas supports a special form of evaluation where hooks are
placed when evaluation enters or leaves an expression.

This section will explain the way custom evaluation is sup-
ported in Yacas, and will proceed to demonstrate how it can
be used by showing code to trace, interactively step through,
profile, and write custom debugging code.

Debugging, tracing and profiling has been implemented in
the debug.rep/ module, but a simplification of that code will be
presented here to show the basic concepts.

7.1 The basic infrastructure for
custom evaluation

The name of the function is CustomEval, and the calling se-
quence is:

CustomEval(enter,leave,error,expression);

Here, expression is the expression to be evaluated, enter

some expression that should be evaluated when entering an ex-
pression, and leave an expression to be evaluated when leaving
evaluation of that expression.

The error expression is evaluated when an error occurred.
If an error occurs, this is caught high up, the error expres-
sion is called, and the debugger goes back to evaluating enter

again so the situation can be examined. When the debug-
ger needs to stop, the error expression is the place to call
CustomEval’Stop() (see explanation below).

The CustomEval function can be used to write custom debug-
ging tools. Examples are:

1. a trace facility following entering and leaving functions

2. interactive debugger for stepping through evaluation of an
expression.

3. profiler functionality, by having the callback functions do
the bookkeeping on counts of function calls for instance.

In addition, custom code can be written to for instance halt
evaluation and enter interactive mode as soon as some very spe-
cific situation occurs, like “stop when function foo is called while
the function bar is also on the call stack and the value of the
local variable x is less than zero”.

As a first example, suppose we define the functions TraceEn-
ter(), TraceLeave() and TraceExp() as follows:

TraceStart() := [indent := 0;];

TraceEnter() :=

[

indent++;

Space(2*indent);

Echo("Enter ",CustomEval’Expression());

];

TraceLeave() :=

[

Space(2*indent);

Echo("Leave ",CustomEval’Result());

indent--;

];

Macro(TraceExp,{expression})

[

TraceStart();

CustomEval(TraceEnter(),

TraceLeave(),

CustomEval’Stop(),@expression);

];

allows us to have tracing in a very basic way. We can now
call:

In> TraceExp(2+3)

Enter 2+3

Enter 2

Leave 2

Enter 3

Leave 3

Enter IsNumber(x)

Enter x

Leave 2

Leave True

Enter IsNumber(y)

Enter y

Leave 3

Leave True

Enter True

Leave True

Enter MathAdd(x,y)

Enter x

Leave 2

Enter y

Leave 3

Leave 5

Leave 5

Out> 5;

This example shows the use of CustomEval’Expression and
CustomEval’Result. These functions give some extra access
to interesting information while evaluating the expression. The
functions defined to allow access to information while evaluating
are:

1. CustomEval’Expression() - return expression currently on
the top call stack for evaluation.

2. CustomEval’Result() - when the leave argument is called
this function returns what the evaluation of the top expres-
sion will return.
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3. CustomEval’Locals() - returns a list with the current local
variables.

4. CustomEval’Stop() - stop debugging execution

7.2 A simple interactive debugger

The following code allows for simple interactive debugging:

DebugStart():=

[

debugging:=True;

breakpoints:={};

];

DebugRun():= [debugging:=False;];

DebugStep():=[debugging:=False;nextdebugging:=True;];

DebugAddBreakpoint(fname_IsString) <--

[ breakpoints := fname:breakpoints;];

BreakpointsClear() <-- [ breakpoints := {};];

Macro(DebugEnter,{})

[

Echo(">>> ",CustomEval’Expression());

If(debugging = False And

IsFunction(CustomEval’Expression()) And

Contains(breakpoints,

Type(CustomEval’Expression())),

debugging:=True);

nextdebugging:=False;

While(debugging)

[

debugRes:=

Eval(FromString(

ReadCmdLineString("Debug> "):";")

Read());

If(debugging,Echo("DebugOut> ",debugRes));

];

debugging:=nextdebugging;

];

Macro(DebugLeave,{})

[

Echo(CustomEval’Result(),

" <-- ",CustomEval’Expression());

];

Macro(Debug,{expression})

[

DebugStart();

CustomEval(DebugEnter(),

DebugLeave(),

debugging:=True,@expression);

];

This code allows for the following interaction:

In> Debug(2+3)

>>> 2+3

Debug>

The console now shows the current expression being evalu-
ated, and a debug prompt for interactive debugging. We can
enter DebugStep(), which steps to the next expression to be
evaluated:

Debug> DebugStep();

>>> 2

Debug>

This shows that in order to evaluate 2+3 the interpreter first
needs to evaluate 2. If we step further a few more times, we
arrive at:

>>> IsNumber(x)

Debug>

Now we might be curious as to what the value for x is. We
can dynamically obtain the value for x by just typing it on the
command line.

>>> IsNumber(x)

Debug> x

DebugOut> 2

x is set to 2, so we expect IsNumber to return True. Stepping
again:

Debug> DebugStep();

>>> x

Debug> DebugStep();

2 <-- x

True <-- IsNumber(x)

>>> IsNumber(y)

So we see this is true. We can have a look at which local vari-
ables are currently available by calling CustomEval’Locals():

Debug> CustomEval’Locals()

DebugOut> {arg1,arg2,x,y,aLeftAssign,aRightAssign}

And when bored, we can proceed with DebugRun() which
will continue the debugger until finished in this case (a more
sophisticated debugger can add breakpoints, so running would
halt again at for instance a breakpoint).

Debug> DebugRun()

>>> y

3 <-- y

True <-- IsNumber(y)

>>> True

True <-- True

>>> MathAdd(x,y)

>>> x

2 <-- x

>>> y

3 <-- y

5 <-- MathAdd(x,y)

5 <-- 2+3

Out> 5;

The above bit of code also supports primitive breakpointing,
in that one can instruct the evaluator to stop when a function
will be entered. The debugger then stops just before the argu-
ments to the function are evaluated. In the following example,
we make the debugger stop when a call is made to the MathAdd

function:

In> Debug(2+3)

>>> 2+3

Debug> DebugAddBreakpoint("MathAdd")

DebugOut> {"MathAdd"}

Debug> DebugRun()

>>> 2

2 <-- 2

>>> 3

3 <-- 3

>>> IsNumber(x)

>>> x

2 <-- x

True <-- IsNumber(x)

>>> IsNumber(y)

>>> y

3 <-- y
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True <-- IsNumber(y)

>>> True

True <-- True

>>> MathAdd(x,y)

Debug>

The arguments to MathAdd can now be examined, or execution
continued.

One great advantage of defining much of the debugger in
script code can be seen in the DebugEnter function, where the
breakpoints are checked, and execution halts when a breakpoint
is reached. In this case the condition for stopping evaluation is
rather simple: when entering a specific function, stop. However,
nothing stops a programmer from writing a custom debugger
that could stop on any condition, halting at e very special case.

7.3 Profiling

A simple profiler that counts the number of times each function
is called can be written such:

ProfileStart():=

[

profilefn:={};

];

10 # ProfileEnter()

_(IsFunction(CustomEval’Expression())) <--

[

Local(fname);

fname:=Type(CustomEval’Expression());

If(profilefn[fname]=Empty,profilefn[fname]:=0);

profilefn[fname] := profilefn[fname]+1;

];

Macro(Profile,{expression})

[

ProfileStart();

CustomEval(ProfileEnter(),True,

CustomEval’Stop(),@expression);

ForEach(item,profilefn)

Echo("Function ",item[1]," called ",

item[2]," times");

];

which allows for the interaction:

In> Profile(2+3)

Function MathAdd called 1 times

Function IsNumber called 2 times

Function + called 1 times

Out> True;

7.4 The Yacas Debugger

Why introduce a debug version?

The reason for introducing a debug version is that for a de-
bugger it is often necessary to introduce features that make the
interpreter slower. For the main kernel this is unacceptable, but
for a debugging version this is defendable. It is good for test-
ing small programs, to see where a calculation breaks. Having
certain features only in the debug version keeps the release exe-
cutable can be kept lean and mean, while still offering advanced
debug features.

How to build the debug version of Yacas ?

The debug version has to be built separately from the “produc-
tion” version of Yacas (all source files have to be recompiled).

To build the debug version of yacas, run configure with

./configure --enable-debug

and after that

make

as usual.

What does the debug version of yacas offer?

The Yacas debugger is in development still, but already has
some useful features.

When you build the debug version of yacas, and run a com-
mand, it will:

• keep track of the memory allocated and freed, and show
any memory leaks when you quit the program.

• show which files are loaded to read function definitions and
when. This is only done when the --verbose-debug flag is
passed to the program at startup.

• keep a file name and line number for each object loaded
from file, for debugging purposes.

• show you the stack trace when evaluation goes into an infi-
nite recursion (equivalent of always using TraceStack) and
print file names and line numbers for all rules.

Future versions will have the ability to step through code and
to watch local and global variables while executing, modifying
them on the fly.
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Chapter 8

Advanced example 2: implementing a
non-commutative algebra

We need to understand how to simplify expressions in Yacas,
and the best way is to try writing our own algebraic expression
handler. In this chapter we shall consider a simple implementa-
tion of a particular non-commutative algebra called the Heisen-
berg algebra. This algebra was introduced by Dirac to develop
quantum field theory. We won’t explain any physics here, but
instead we shall to delve somewhat deeper into the workings of
Yacas.

8.1 The problem

Suppose we want to define special symbols A (k) and B (k)
that we can multiply with each other or by a number, or
add to each other, but not commute with each other, i.e.
A (k) B (k) 6= B (k) A (k). Here k is merely a label to denote
that A (1) and A (2) are two different objects. (In physics, these
are called “creation” and “annihilation” operators for “bosonic
quantum fields”.) Yacas already assumes that the usual mul-
tiplication operator “*” is commutative. Rather than trying
to redefine *, we shall introduce a special multiplication sign
”**” that we shall use with the objects A (k) and B (k); be-
tween usual numbers this would be the same as normal mul-
tiplication. The symbols A (k), B (k) will never be evaluated
to numbers, so an expression such as 2 ** A(k1) ** B(k2) **

A(k3) is just going to remain like that. (In physics, commut-
ing numbers are called ”classical quantities” or ”c-numbers”
while non-commuting objects made up of A(k) and B(k) are
called ”quantum quantities” or ”q-numbers”.) There are cer-
tain commutation relations for these symbols: the A’s commute
between themselves, A (k) A (l) = A (l) A (k), and also the B’s,
B (k) B (l) = B (l) B (k). However, the A’s don’t commute with
the B’s: A (k) B (l) − B (l) A (k) = δ (k − l). Here the ”delta”
is a ”classical” function (called the ”Dirac δ-function”) but we
aren’t going to do anything about it, just leave it symbolic.

We would like to be able to manipulate such expressions,
expanding brackets, collecting similar terms and so on, while
taking care to always keep the non-commuting terms in the
correct order. For example, we want Yacas to automatically
simplify 2**B(k1)**3**A(k2) to 6**B(k1)**A(k2). Our goal is
not to implement a general package to tackle complicated non-
commutative operations; we merely want to teach Yacas about
these two kinds of ”quantum objects” called A(k) and B(k),
and we shall define one function that a physicist would need to
apply to these objects. This function applied to any given ex-
pression containing A’s and B’s will compute something called
a ”vacuum expectation value”, or ”VEV” for short, of that ex-
pression. This function has ”classical”, i.e. commuting, values

and is defined as follows: VEV of a commuting number is just
that number, e.g. VEV (4) = 4, VEV (δ (k − l)) = δ (k − l);
and VEV (XA (k)) = 0, VEV (B (k)X) = 0 where X is any ex-
pression, commutative or not. It is straightforward to compute
VEV of something that contains A’s and B’s: one just uses the
commutation relations to move all B’s to the left of all A’s, and
then applies the definition of VEV, simply throwing out any
remaining q-numbers.

8.2 First steps

The first thing that comes to mind when we start implementing
this in Yacas is to write a rule such as

10 # A(_k)**B(_l) <-- B(l)**A(k)

+ delta(k-l);

However, this is not going to work right away. In fact this will
immediately give a syntax error because Yacas doesn’t know yet
about the new multiplication **. Let’s fix that: we shall define
a new infix operator with the same precedence as multiplication.

RuleBase("**", {x,y});

Infix("**", OpPrecedence("*"));

Now we can use this new multiplication operator in expres-
sions, and it doesn’t evaluate to anything – exactly what we
need. But we find that things don’t quite work:

In> A(_k)**B(_l) <-- B(l)**A(k)+delta(k-l);

Out> True;

In> A(x)**B(y)

Out> B(l)**A(k)+delta(k-l);

Yacas doesn’t grok that delta(k), A(k) and B(k) are functions.
This can be fixed by declaring

RuleBase("A", {k});

RuleBase("B", {k});

RuleBase("delta", {k});

Now things work as intended:

In> A(y)**B(z)*2

Out> 2*(B(z)**A(y)+delta(y-z));

8.3 Structure of expressions

Are we done yet? Let’s try to calculate more things with our
A’s and B’s:
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In> A(k)*2**B(l)

Out> 2*A(k)**B(l);

In> A(x)**A(y)**B(z)

Out> A(x)**A(y)**B(z);

In> (A(x)+B(x))**2**B(y)*3

Out> 3*(A(x)+B(x))**2**B(y);

After we gave it slightly more complicated input, Yacas didn’t
fully evaluate expressions containing the new ** operation: it
didn’t move constants 2 and 3 together, didn’t expand brackets,
and, somewhat mysteriously, it didn’t apply the rule in the first
line above – although it seems like it should have. Before we
hurry to fix these things, let’s think some more about how Yacas
represents our new expressions. Let’s start with the first line
above:

In> FullForm( A(k)*2**B(l) )

(** (* 2 (A k ))(B l ))

Out> 2*A(k)**B(l);

What looks like 2*A(k)**B(l) on the screen is really (2*A(k))

** B(l) inside Yacas. In other words, the commutation rule
didn’t apply because there is no subexpression of the form
A(...)**B(...) in this expression. It seems that we would
need many rules to exhaust all ways in which the adjacent fac-
tors A(k) and B(l) might be divided between subexpressions.
We run into this difficulty because Yacas represents all expres-
sions as trees of functions and leaves the semantics to us. To
Yacas, the ”*” operator is fundamentally no different from any
other function, so (a*b)*c and a*(b*c) are two basically differ-
ent expressions. It would take a considerable amount of work
to teach Yacas to recognize all such cases as identical. This is a
design choice and it was made by the author of Yacas to achieve
greater flexibility and extensibility.

A solution for this problem is not to write rules for all pos-
sible cases (there are infinitely many cases) but to systemati-
cally reduce expressions to a canonical form. “Experience has
shown that” (a phrase used when we can’t come up with specific
arguments) symbolic manipulation of unevaluated trees is not
efficient unless these trees are forced to a pattern that reflects
their semantics.

We should choose a canonical form for all such expressions in
a way that makes our calculations – namely, the function VEV()

– easier. In our case, our expressions contain two kinds of ingre-
dients: normal, commutative numbers and maybe a number of
noncommuting symbols A(k) and B(k) multiplied together with
the ”**” operator. It will not be possible to divide anything by
A (k) or B (k) – such division is undefined.

A possible canonical form for expressions with A’s and B’s
is the following. All commutative numbers are moved to
the left of the expression and grouped together as one fac-
tor; all non-commutative products are simplified to a sin-
gle chain, all brackets expanded. A canonical expression
should not contain any extra brackets in its non-commutative
part. For example, (A(x)+B(x)*x)**B(y)*y**A(z) should be
regrouped as a sum of two terms, (y)**(A(x)**(B(y))**A(z))
and (x*y)**(B(x)**(B(y))**A(z)). Here we wrote out all paren-
theses to show explicitly which operations are grouped. (We
have chosen the grouping of non-commutative factors to go from
left to right, however this does not seem to be an important
choice.) On the screen this will look simply y ** A(x) ** B(y)

and x*y** B(x) ** B(y) ** A(z) because we have defined the
precedence of the “**” operator to be the same as that of the
normal multiplication, so Yacas won’t insert any more paren-
theses.

This canonical form will allow Yacas to apply all the usual
rules on the commutative factor while cleanly separating all non-

commutative parts for special treatment. Note that a commu-
tative factor such as 2*x will be multiplied by a single non-
commutative piece with ”**”.

The basic idea behind the “canonical form” is this: we should
define our evaluation rules in such a way that any expression
containing A(k) and B(k) will be always automatically reduced
to the canonical form after one full evaluation. All functions on
our new objects will assume that the object is already in the
canonical form and should return objects in the same canonical
form.

8.4 Implementing the canonical
form

Now that we have a design, let’s look at some implementation
issues. We would like to write evaluation rules involving the
new operator “**” as well as the ordinary multiplications and
additions involving usual numbers, so that all “classical” num-
bers and all “quantum” objects are grouped together separately.
This should be accomplished with rules that expand brackets,
exchange the bracketing order of expressions and move commut-
ing factors to the left. For now, we shall not concern ourselves
with divisions and subtractions.

First, we need to distinguish “classical” terms from “quan-
tum” ones. For this, we shall define a predicate IsQuantum()

recursively, as follows:

/* Predicate IsQuantum(): will return

True if the expression contains A(k)

or B(k) and False otherwise */

10 # IsQuantum(A(_x)) <-- True;

10 # IsQuantum(B(_x)) <-- True;

/* Result of a binary operation may

be Quantum */

20 # IsQuantum(_x + _y) <-- IsQuantum(x)

Or IsQuantum(y);

20 # IsQuantum(+ _y) <-- IsQuantum(y);

20 # IsQuantum(_x * _y) <-- IsQuantum(x)

Or IsQuantum(y);

20 # IsQuantum(_x ** _y) <-- IsQuantum(x)

Or IsQuantum(y);

/* If none of the rules apply, the

object is not Quantum */

30 # IsQuantum(_x) <-- False;

Now we shall construct rules that implement reduction to
the canonical form. The rules will be given precedences, so
that the reduction proceeds by clearly defined steps. All rules
at a given precedence benefit from all simplifications at earlier
precedences.

/* First, replace * by ** if one of the

factors is Quantum to guard against

user error */

10 # (_x * _y)_(IsQuantum(x) Or

IsQuantum(y)) <-- x ** y;

/* Replace ** by * if neither of the

factors is Quantum */

10 # (_x ** _y)_(Not(IsQuantum(x) Or

IsQuantum(y))) <-- x * y;

/* Now we are guaranteed that ** is

used between Quantum values */

/* Expand all brackets involving

Quantum values */

15 # (_x + _y) ** _z <-- x ** z + y ** z;

15 # _z ** (_x + _y) <-- z ** x + z ** y;

25



/* Now we are guaranteed that there are

no brackets next to "**" */

/* Regroup the ** multiplications

toward the right */

20 # (_x ** _y) ** _z <-- x ** (y ** z);

/* Move classical factors to the left:

first, inside brackets */

30 # (x_IsQuantum ** _y)_(Not(IsQuantum(y)))

<-- y ** x;

/* Then, move across brackets:

y and z are already ordered

by the previous rule */

/* First, if we have Q ** (C ** Q) */

35 # (x_IsQuantum ** (_y ** _z))

_(Not(IsQuantum(y))) <-- y ** (x ** z);

/* Second, if we have C ** (C ** Q) */

35 # (_x ** (_y ** _z))_(Not(IsQuantum(x)

Or IsQuantum(y))) <-- (x*y) ** z;

After we execute this in Yacas, all expressions involving ad-
ditions and multiplications are automatically reduced to the
canonical form. Extending these rules to subtractions and divi-
sions is straightforward.

8.5 Implementing commutation re-
lations

But we still haven’t implemented the commutation relations. It
is perhaps not necessary to have commutation rules automati-
cally applied at each evaluation. We shall define the function
OrderBA() that will bring all B’s to the left of all A’s by using
the commutation relation. (In physics, this is called ”normal-
ordering”.) Again, our definition will be recursive. We shall
assign it a later precedence than our quantum evaluation rules,
so that our objects will always be in canonical form. We need a
few more rules to implement the commutation relation and to
propagate the ordering operation down the expression tree:

/* Commutation relation */

40 # OrderBA(A(_k) ** B(_l))

<-- B(l)**A(k) + delta(k-l);

40 # OrderBA(A(_k) ** (B(_l) ** _x))

<-- OrderBA(OrderBA(A(k)**B(l)) ** x);

/* Ordering simple terms */

40 # OrderBA(_x)_(Not(IsQuantum(x))) <-- x;

40 # OrderBA(A(_k)) <-- A(k);

40 # OrderBA(B(_k)) <-- B(k);

/* Sums of terms */

40 # OrderBA(_x + _y) <-- OrderBA(x)

+ OrderBA(y);

/* Product of a classical and

a quantum value */

40 # OrderBA(_x ** _y)_(Not(IsQuantum(x)))

<-- x ** OrderBA(y);

/* B() ** X : B is already at left,

no need to order it */

50 # OrderBA(B(_k) ** _x)<-- B(k)

** OrderBA(x);

/* A() ** X : need to order X first */

50 # OrderBA(A(_k) ** _x) <-- OrderBA(A(k)

** OrderBA(x));

These rules seem to be enough for our purposes. Note that
the commutation relation is implemented by the first two rules;
the first one is used by the second one which applies when in-
terchanging factors A and B separated by brackets. This in-

convenience of having to define several rules for what seems to
be “one thing to do” is a consequence of tree-like structure of
expressions in Yacas. It is perhaps the price we have to pay for
conceptual simplicity of the design.

8.6 Avoiding infinite recursion

However, we quickly discover that our definitions don’t work.
Actually, we have run into a difficulty typical of rule-based pro-
gramming:

In> OrderBA(A(k)**A(l))

Error on line 1 in file [CommandLine]

Line error occurred on:

>>>

Max evaluation stack depth reached.

Please use MaxEvalDepth to increase the

stack size as needed.

This error message means that we have created an infinite re-
cursion. It is easy to see that the last rule is at fault: it never
stops applying itself when it operates on a term containing only
A’s and no B’s. When encountering a term such as A()**X, the
routine cannot determine whether X has already been normal-
ordered or not, and it unnecessarily keeps trying to normal-order
it again and again. We can circumvent this difficulty by using
an auxiliary ordering function that we shall call OrderBAlate().
This function will operate only on terms of the form A()**X and
only after X has been ordered. It will not perform any extra sim-
plifications but instead delegate all work to OrderBA().

50 # OrderBA(A(_k) ** _x) <-- OrderBAlate(

A(k) ** OrderBA(x));

55 # OrderBAlate(_x + _y) <-- OrderBAlate(

x) + OrderBAlate(y);

55 # OrderBAlate(A(_k) ** B(_l)) <--

OrderBA(A(k)**B(l));

55 # OrderBAlate(A(_k) ** (B(_l) ** _x))

<-- OrderBA(A(k)**(B(l)**x));

60 # OrderBAlate(A(_k) ** _x) <-- A(k)**x;

65 # OrderBAlate(_x) <-- OrderBA(x);

Now OrderBA() works as desired.

8.7 Implementing VEV()

Now it is easy to define the function VEV(). This function should
first execute the normal-ordering operation, so that all B’s move
to the left of A’s. After an expression is normal-ordered, all of
its ”quantum” terms will either end with an A (k) or begin with
a B (k), or both, and VEV() of those terms will return 0. The
value of VEV() of a non-quantum term is just that term. The
implementation could look like this:

100 # VEV(_x) <-- VEVOrd(OrderBA(x));

/* Everything is expanded now,

deal term by term */

100 # VEVOrd(_x + _y) <-- VEVOrd(x)

+ VEVOrd(y);

/* Now cancel all quantum terms */

110 # VEVOrd(x_IsQuantum) <-- 0;

/* Classical terms are left */

120 # VEVOrd(_x) <-- x;

To avoid infinite recursion in calling OrderBA(), we had to intro-
duce an auxiliary function VEVOrd() that assumes its argument
to be ordered.

Finally, we try some example calculations to test our rules:
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In> OrderBA(A(x)*B(y))

Out> B(y)**A(x)+delta(x-y);

In> OrderBA(A(x)*B(y)*B(z))

Out> B(y)**B(z)**A(x)+delta(x-z)**B(y)

+delta(x-y)**B(z);

In> VEV(A(k)*B(l))

Out> delta(k-l);

In> VEV(A(k)*B(l)*A(x)*B(y))

Out> delta(k-l)*delta(x-y);

In> VEV(A(k)*A(l)*B(x)*B(y))

Out> delta(l-y)*delta(k-x)+delta(l-x)

*delta(k-y);

Things now work as expected. Yacas’s Simplify() facilities can
be used on the result of VEV() if it needs simplification.
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Chapter 9

GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330

Boston, MA, 02111-1307

USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook,
or other written document “free” in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that deriva-
tive works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for man-
uals for free software, because free software needs free docu-
mentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The “Document”, below, refers
to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work con-
taining the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter
section of the Document that deals exclusively with the rela-
tionship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For
example, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections
whose titles are designated, as being those of Invariant Sections,
in the notice that says that the Document is released under this
License.

The “Cover Texts” are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-
readable copy, represented in a format whose specification is
available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text ed-
itors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic transla-
tion to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include
plain ASCII without markup, Texinfo input format, LaTeX in-
put format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modi-
fication. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or process-
ing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page
itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title
Page” means the text near the most prominent appearance of
the work’s title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium,
either commercially or noncommercially, provided that this Li-
cense, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of
this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated
above, and you may publicly display copies.
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Copying in Quantity

If you publish printed copies of the Document numbering more
than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both cov-
ers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to
fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto ad-
jacent pages.

If you publish or distribute Opaque copies of the Docu-
ment numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible
computer-network location containing a complete Transparent
copy of the Document, free of added material, which the gen-
eral network-using public has access to download anonymously
at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to
ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors
of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated
version of the Document.

Modifications

You may copy and distribute a Modified Version of the Docu-
ment under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this Li-
cense, with the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification of the Modi-
fied Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of pre-
vious versions (which should, if there were any, be listed
in the History section of the Document). You may use the
same title as a previous version if the original publisher of
that version gives permission.

2. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the prin-
cipal authors of the Document (all of its principal authors,
if it has less than five).

3. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

6. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified

Version under the terms of this License, in the form shown
in the Addendum below.

7. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document’s
license notice.

8. Include an unaltered copy of this License.

9. Preserve the section entitled “History”, and its title, and
add to it an item stating at least the title, year, new au-
thors, and publisher of the Modified Version as given on
the Title Page. If there is no section entitled “History” in
the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated
in the previous sentence.

10. Preserve the network location, if any, given in the Docu-
ment for public access to a Transparent copy of the Docu-
ment, and likewise the network locations given in the Doc-
ument for previous versions it was based on. These may be
placed in the “History” section. You may omit a network
location for a work that was published at least four years
before the Document itself, or if the original publisher of
the version it refers to gives permission.

11. In any section entitled “Acknowledgements” or “Dedica-
tions”, preserve the section’s title, and preserve in the sec-
tion all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unal-
tered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

13. Delete any section entitled “Endorsements”. Such a section
may not be included in the Modified Version.

14. Do not retitle any existing section as “Endorsements” or
to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled “Endorsements”, provided it
contains nothing but endorsements of your Modified Version by
various parties – for example, statements of peer review or that
the text has been approved by an organization as the authori-
tative definition of a standard.

You may add a passage of up to five words as a Front-Cover
Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by
this License give permission to use their names for publicity for
or to assert or imply endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released
under this License, under the terms defined in section 4 above
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for modified versions, provided that you include in the combina-
tion all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your com-
bined work in its license notice.

The combined work need only contain one copy of this Li-
cense, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled
“History” in the various original documents, forming one sec-
tion entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”.
You must delete all sections entitled “Endorsements.”

Collections of Documents

You may make a collection consisting of the Document and other
documents released under this License, and replace the individ-
ual copies of this License in the various documents with a single
copy that is included in the collection, provided that you fol-
low the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection,
and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copy-
ing of that document.

Aggregation With Independent Works

A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume
of a storage or distribution medium, does not as a whole count
as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is
called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to
these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Doc-
ument within the aggregate. Otherwise they must appear on
covers around the whole aggregate.

Translation

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of sec-
tion 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addi-
tion to the original versions of these Invariant Sections. You
may include a translation of this License provided that you also
include the original English version of this License. In case of a
disagreement between the translation and the original English
version of this License, the original English version will prevail.

Termination

You may not copy, modify, sublicense, or distribute the Docu-
ment except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Doc-
ument is void, and will automatically terminate your rights un-
der this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either
of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by
the Free Software Foundation.

ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include
a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is

granted to copy, distribute and/or modify this

document under the terms of the GNU Free

Documentation License, Version 1.1 or any later

version published by the Free Software Foundation;

with the Invariant Sections being LIST THEIR

TITLES, with the Front-Cover Texts being LIST, and

with the Back-Cover Texts being LIST. A copy of

the license is included in the section entitled

‘‘GNU Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant
Sections” instead of saying which ones are invariant. If you have
no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program
code, we recommend releasing these examples in parallel under
your choice of free software license, such as the GNU General
Public License, to permit their use in free software.
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