
The Yacas Book of Algorithms

by the Yacas team 1

Yacas version: 1.2.1
generated on September 27, 2007

This book is a detailed description of the algorithms used in the Yacas system for exact symbolic and
arbitrary-precision numerical computations. Very few of these algorithms are new, and most are
well-known. The goal of this book is to become a compendium of all relevant issues of design and

implementation of these algorithms.

1This text is part of the Yacas software package. Copyright 2000–2002. Principal documentation authors: Ayal Zwi Pinkus,
Serge Winitzki, Jitse Niesen. Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free
Documentation License”.

Contents

1 Symbolic algebra algorithms 3
1.1 Sparse representations . 3
1.2 Implementation of multivariate polynomials . 4
1.3 Integration . 5
1.4 Transforms . 6
1.5 Finding real roots of polynomials . 7

2 Number theory algorithms 10
2.1 Euclidean GCD algorithms . 10
2.2 Prime numbers: the Miller-Rabin test and its improvements . 10
2.3 Factorization of integers . 11
2.4 The Jacobi symbol . 12
2.5 Integer partitions . 12
2.6 Miscellaneous functions . 13
2.7 Gaussian integers . 13

3 A simple factorization algorithm for univariate polynomials 15
3.1 Modular arithmetic . 15
3.2 Factoring using modular arithmetic . 16
3.3 Preparing the polynomial for factorization . 16
3.4 Definition of division of polynomials . 16
3.5 Determining possible factors modulo 2 . 16
3.6 Determining factors modulo 2n given a factorization modulo 2 . 17
3.7 Efficiently deciding if a polynomial divides another . 17
3.8 Extending the algorithm . 17
3.9 Newton iteration . 18

4 Numerical algorithms I: basic methods 20
4.1 Adaptive function plotting . 20
4.2 Surface plotting . 21
4.3 Parametric plots . 22
4.4 The cost of arbitrary-precision computations . 22
4.5 Estimating convergence of a series . 23
4.6 Estimating the round-off error . 23
4.7 Basic arbitrary-precision arithmetic . 24
4.8 How many digits of sin exp (exp (1000)) do we need? . 25
4.9 Continued fractions . 26
4.10 Estimating convergence of continued fractions . 29
4.11 Newton’s method and its improvements . 32
4.12 Fast evaluation of Taylor series . 35
4.13 Using asymptotic series for calculations . 37
4.14 The AGM sequence algorithms . 37
4.15 The binary splitting method . 38

1

5 Numerical algorithms II: elementary functions 40
5.1 Powers . 40
5.2 Roots . 41
5.3 Logarithm . 43
5.4 Exponential . 46
5.5 Calculation of π . 47
5.6 Trigonometric functions . 49
5.7 Inverse trigonometric functions . 49
5.8 Factorials and binomial coefficients . 50
5.9 Classical orthogonal polynomials: general case . 51
5.10 Classical orthogonal polynomials: special cases . 52
5.11 Series of orthogonal polynomials . 53

6 Numerical algorithms III: special functions 54
6.1 Euler’s Gamma function . 54
6.2 Euler’s constant γ . 56
6.3 Catalan’s constant G . 57
6.4 Riemann’s Zeta function . 58
6.5 Lambert’s W function . 60
6.6 Bessel functions . 60
6.7 Bernoulli numbers and polynomials . 61
6.8 Error function erf x and related functions . 63

7 References 65

8 GNU Free Documentation License 66

2

Chapter 1

Symbolic algebra algorithms

1.1 Sparse representations

The sparse tree data structure

Yacas has a sparse tree object for use as a storage for storing
(key,value) pairs for which the following properties hold:

• (key, value1) + (key, value2) = (key, value1+value2)

In addition, for multiplication the following rule is
obeyed:

• (key1, value1) * (key2, value2) = (key1+key2,
value1*value2)

The last is optional. For multivariate polynomi-
als (described elsewhere) both hold, but for matri-
ces, only the addition property holds. The function
MultiplyAddSparseTrees (described below) should not be used
in these cases.

Internal structure

A key is defined to be a list of integer numbers (n1, ..., nm).
Thus for a two-dimensional key, one item in the sparse tree
database could be reflected as the (key,value) pair {{1,2},3}
, which states that element (1,2) has value 3. (Note: this is
not the way it is stored in the database!).

The storage is recursive. The sparse tree begins with a list of
objects {n1,tree1} for values of n1 for the first item in the
key. The tree1 part then contains a sub-tree for all the items
in the database for which the value of the first item in the key
is n1.

The above single element could be created with

In> r:=CreateSparseTree({1,2},3)

Out> {{1,{{2,3}}}};

CreateSparseTree makes a database with exactly one item.
Items can now be obtained from the sparse tree with
SparseTreeGet.

In> SparseTreeGet({1,2},r)

Out> 3;

In> SparseTreeGet({1,3},r)

Out> 0;

And values can also be set or changed:

In> SparseTreeSet({1,2},r,Current+5)

Out> 8;

In> r

Out> {{1,{{2,8}}}};

In> SparseTreeSet({1,3},r,Current+5)

Out> 5;

In> r

Out> {{1,{{3,5},{2,8}}}};

The variable Current represents the current value, and can be
used to determine the new value. SparseTreeSet destructively
modifies the original, and returns the new value. If the key pair
was not found, it is added to the tree.

The sparse tree can be traversed, one element at a time, with
SparseTreeScan:

In> SparseTreeScan(Hold({{k,v},Echo({k,v})}),2,r)

{1,3} 5

{1,2} 8

An example of the use of this function could be multiplying a
sparse matrix with a sparse vector, where the entire matrix can
be scanned with SparseTreeScan, and each non-zero matrix ele-
ment A(i,j) can then be multiplied with a vector element vj , and
the result added to a sparse vector wi, using the SparseTreeGet
and SparseTreeSet functions. Multiplying two sparse matrices
would require two nested calls to SparseTreeScan to multiply
every item from one matrix with an element from the other, and
add it to the appropriate element in the resulting sparse matrix.

When the matrix elements A(i,j) are defined by a function
f (i, j) (which can be considered a dense representation), and
it needs to be multiplied with a sparse vector vj , it is better
to iterate over the sparse vector vj . Representation defines the
most efficient algorithm to use in this case.

The API to sparse trees is:

• CreateSparseTree(coefs,fact) - Create a sparse tree
with one monomial, where ’coefs’ is the key, and ’fact’ the
value. ’coefs’ should be a list of integers.

• SparseTreeMap(op,depth,tree) - Walk over the sparse
tree, one element at a time, and apply the function “op”
on the arguments (key,value). The ’value’ in the tree is
replaced by the value returned by the op function. ’depth’
signifies the dimension of the tree (number of indices in the
key).

• SparseTreeScan(op,depth,tree) - Same as Sparse-
TreeMap, but without changing elements.

• AddSparseTrees(depth,x,y),
MultiplyAddSparseTrees(depth,x,y,coefs,fact) -
Add sparse tree ’y’ to sparse tree ’x’, destructively. in
the MultiplyAdd case, the monomials are treated as if
they were multiplied by a monomial with coefficients
with the (key,value) pair (coefs,fact). ’depth’ signifies the
dimension of the tree (number of indices in the key).

• SparseTreeGet(key,tree) - return value stored for key in
the tree.

3

• SparseTreeSet(key,tree,newvalue) - change the value
stored for the key to newvalue. If the key was not found
then newvalue is stored as a new item. The variable
Current is set to the old value (or zero if the key didn’t
exist in the tree) before evaluating newvalue.

1.2 Implementation of multivariate
polynomials

This section describes the implementation of multivariate poly-
nomials in Yacas.

Concepts and ideas are taken from the books [Davenport et
al. 1989] and [von zur Gathen et al. 1999].

Definitions

The following definitions define multivariate polynomials, and
the functions defined on them that are of interest for using such
multivariates.

A term is an object which can be written as

cxn1
1 xn2

2 ...xnm
m

for m variables (x1, ..., xm). The numbers nm are integers. c is
called a coefficient, and xn1

1 xn2
2 ...xnm

m a monomial.
A multivariate polynomial is taken to be a sum over terms.
We write caxa for a term, where a is a list of powers for the

monomial, and ca the coefficient of the term.
It is useful to define an ordering of monomials, to be able to

determine a canonical form of a multivariate.
For the currently implemented code the lexicographic order

has been chosen:

• first an ordering of variables is chosen, (x1, ..., xm)

• for the exponents of a monomial, a = (a1, ..., am) the
lexicographic order first looks at the first exponent, a1, to
determine which of the two monomials comes first in the
multivariate. If the two exponents are the same, the next
exponent is considered.

This method is called lexicographic because it is similar to the
way words are ordered in a usual dictionary.

For all algorithms (including division) there is some freedom
in the ordering of monomials. One interesting advantage of the
lexicographic order is that it can be implemented with a recur-
sive data structure, where the first variable, x1 can be treated as
the main variable, thus presenting it as a univariate polynomial
in x1 with all its terms grouped together.

Other orderings can be used, by re-implementing a part of the
code dealing with multivariate polynomials, and then selecting
the new code to be used as a driver, as will be described later
on.

Given the above ordering, the following definitions can be
stated:

For a non-zero multivariate polynomial

f =

amin∑
a=amax

caxa

with a monomial order:

1. caxa is a term of the multivariate.

2. the multidegree of f is mdeg (f) ≡ amax.

3. the leading coefficient of f is lc (f) ≡ cmdeg(f), for the first
term with non-zero coefficient.

4. the leading monomial of f is lm (f) ≡ xmdeg(f).

5. the leading term of f is lt (f) ≡ lc (f) lm (f).

The above define access to the leading monomial, which is
used for divisions, gcd calculations and the like. Thus an im-
plementation needs be able to determine {mdeg(f),lc(f)} .
Note the similarity with the (key,value) pairs described in the
sparse tree section. mdeg (f) can be thought of as a ’key’, and
lc (f) as a ’value’.

The multicontent, multicont (f), is defined to be a term that
divides all the terms in f , and is the term described by (min (a),
Gcd (c)), with Gcd (c) the GCD of all the coefficients, and
min (a) the lowest exponents for each variable, occurring in f
for which c is non-zero.

The multiprimitive part is then defined as pp (f) ≡
f/multicont (f).

For a multivariate polynomial, the obvious addition and (dis-
tributive) multiplication rules hold:

(a+b) + (c+d) := a+b+c+d

a*(b+c) := (a*b)+(a*c)

These are supported in the Yacas system through a multiply-
add operation:

muadd (f, t, g) ≡ f + tg.

This allows for both adding two polynomials (t ≡ 1), or multi-
plication of two polynomials by scanning one polynomial, and
multiplying each term of the scanned polynomial with the other
polynomial, and adding the result to the polynomial that will
be returned. Thus there should be an efficient muadd operation
in the system.

Representation

For the representation of polynomials, on computers it is nat-
ural to do this in an array: (a1, a2, ..., an) for a univariate
polynomial, and the equivalent for multivariates. This is called
a dense representation, because all the coefficients are stored,
even if they are zero. Computers are efficient at dealing with
arrays. However, in the case of multivariate polynomials, ar-
rays can become rather large, requiring a lot of storage and
processing power even to add two such polynomials. For in-
stance, x200y100z300 + 1 could take 6000000 places in an array
for the coefficients. Of course variables could be substituted for
the single factors, p ≡ x200 etc., but it requires an additional ad
hoc step.

An alternative is to store only the terms for which the coeffi-
cients are non-zero. This adds a little overhead to polynomials
that could efficiently be stored in a dense representation, but
it is still little memory, whereas large sparse polynomials are
stored in acceptable memory too. It is of importance to still be
able to add, multiply divide and get the leading term of a mul-
tivariate polynomial, when the polynomial is stored in a sparse
representation.

For the representation, the data structure containing the
(exponents,coefficient) pair can be viewed as a database
holding (key,value) pairs, where the list of exponents is the
key, and the coefficient of the term is the value stored for that
key. Thus, for a variable set {x,y} the list {{1,2},3} represents
3xy2.

Yacas stores multivariates internally as MultiNomial (vars,

terms), where vars is the ordered list of variables, and terms
some object storing all the (key, value) pairs representing the
terms. Note we keep the storage vague: the terms placeholder is
implemented by other code, as a database of terms. The specific

4

representation can be configured at startup (this is described in
more detail below).

For the current version, Yacas uses the ’sparse tree’ represen-
tation, which is a recursive sparse representation. For example,
for a variable set {x,y,z}, the ’terms’ object contains a list of
objects of form {deg,terms}, one for each degree deg for the
variable ’x’ occurring in the polynomial. The ’terms’ part of
this object is then a sub-sparse tree for the variables {y,z}.

An explicit example:

In> MM(3*x^2+y)

Out> MultiNomial({x,y},{{2,{{0,3}}},{0,{{1,1},

{0,0}}}});

The first item in the main list is {2,{{0,3}}}, which states that
there is a term of the form x2y0 ·3. The second item states that
there are two terms, x0y1 · 1 and x0y0 · 0 = 0.

This representation is sparse:

In> r:=MM(x^1000+x)

Out> MultiNomial({x},{{1000,1},{1,1}});

and allows for easy multiplication:

In> r*r

Out> MultiNomial({x},{{2000,1},{1001,2},

{2,1},{0,0}});

In> NormalForm(%)

Out> x^2000+2*x^1001+x^2;

Internal code organization

The implementation of multivariates can be divided in three
levels.

At the top level are the routines callable by the user or the rest
of the system: MultiDegree, MultiDivide, MultiGcd, Groebner,
etc. In general, this is the level implementing the operations
actually desired.

The middle level does the book-keeping of the
MultiNomial(vars,terms) expressions, using the functionality
offered by the lowest level.

For the current system, the middle level is in multivar.rep/

sparsenomial.ys, and it uses the sparse tree representation im-
plemented in sparsetree.ys.

The middle level is called the ’driver’, and can be changed, or
re-implemented if necessary. For instance, in case calculations
need to be done for which dense representations are actually ac-
ceptable, one could write C++ implementing above-mentioned
database structure, and then write a middle-level driver using
the code. The driver can then be selected at startup. In the
file ’yacasinit.ys’ the default driver is chosen, but this can be
overridden in the .yacasrc file or some file that is loaded, or at
the command line, as long as it is done before the multivariates
module is loaded (which loads the selected driver). Driver se-
lection is as simple as setting a global variable to contain a file
name of the file implementing the driver:

Set(MultiNomialDriver,

"multivar.rep/sparsenomial.ys");

where “multivar.rep/sparsenomial.ys” is the file implementing
the driver (this is also the default driver, so the above command
would not change any thing).

The choice was made for static configuration of the driver
before the system starts up because it is expected that there will
in general be one best way of doing it, given a certain system
with a certain set of libraries installed on the operating system,
and for a specific version of Yacas. The best version can then
be selected at start up, as a configuration step. The advantage

of static selection is that no overhead is imposed: there is no
performance penalty for the abstraction layers between the three
levels.

Driver interface

The driver should implement the following interface:

• CreateTerm(vars,{exp,coef}) - create a multivariate
polynomial with one term, in the variables defined in ’var’,
with the (key,value) pair (coefs,fact)

• MultiNomialAdd(multi1, multi2) - add two multivars,
and (possibly) destructively modify multi1 to contain the
result: [multi1 := multi1 + multi2; multi1;];

• MultiNomialMultiplyAdd(multi1, multi2,exp,coef)

- add two multivars, and (possibly) destructively mod-
ify multi1 to contain the result. multi2 is considered
multiplied by a term represented by the (key,value) pair
(exp,coef). [multi1 := multi1 + term * multi2; multi1;];

• MultiNomialNegate(multi) - negate a multivar, returning
-multi, and destructively changing the original. [multi :=
- multi; multi1;];

• MultiNomialMultiply(multi1,multi2) - Multiply two
multivars, and (possibly) destructively modify multi1 to
contain the result, returning the result: [multi1 := multi1
* multi2; multi1;];

• NormalForm(multi) - convert MultiNomial to normal form
(as would be typed in be the user). This is part of the driver
because the driver might be able to do this more efficiently
than code above it which can use ScanMultiNomial.

• MultiLeadingTerm(multi) - return the (key,value) pair
(mdeg(f),lc(f)) representing the leading term. This is all
the information needed about the leading term, and thus
the leading coefficient and multidegree can be extracted
from it.

• MultiDropLeadingZeroes(multi) - remove leading terms
with zero factors.

• MultiTermLess(x,y) - for two (key,value) pairs, return
True if x < y, where the operation < is the one used for the
representation, and False otherwise.

• ScanMultiNomial(op,multi) - traverse all the terms of the
multivariate, applying the function ’op’ to each (key,value)
pair (exp,coef). The monomials are traversed in the order-
ing defined by MultiTermLess. ’op’ should be a function
accepting two arguments.

• MultiZero(multi) - return True if the multivariate is zero
(all coefficients are zero), False otherwise.

1.3 Integration

Integration can be performed by the function Integrate, which
has two calling conventions:

• Integrate(variable) expression

• Integrate(variable, from, to) expression

Integrate can have its own set of rules for specific integrals,
which might return a correct answer immediately. Alternatively,
it calls the function AntiDeriv, to see if the anti-derivative can
be determined for the integral requested. If this is the case, the
anti-derivative is used to compose the output.

If the integration algorithm cannot perform the integral, the
expression is returned unsimplified.

5

The integration algorithm

This section describes the steps taken in doing integration.

General structure

The integration starts at the function Integrate, but the task is
delegated to other functions, one after the other. Each function
can deem the integral unsolvable, and thus return the integral
unevaluated. These different functions offer hooks for adding
new types of integrals to be handled.

Expression clean-up

Integration starts by first cleaning up the expression, by calling
TrigSimpCombine to simplify expressions containing multiplica-
tions of trigonometric functions into additions of trigonometric
functions (for which the integration rules are trivial), and then
passing the result to Simplify.

Generalized integration rules

For the function AntiDeriv, which is responsible for finding the
anti-derivative of a function, the code splits up expressions ac-
cording to the additive properties of integration, eg. integration
of a + b is the same as integrating a + integrating b.

• Polynomials which can be expressed as univariate polyno-
mials in the variable to be integrated over are handled by
one integration rule.

• Expressions of the form pf (x), where p represents a uni-
variate polynomial, and f (x) an integrable function, are
handled by a special integration rule. This transformation
rule has to be designed carefully not to invoke infinite re-
cursion.

• Rational functions, f(x)
g(x)

with both f (x) and g (x) univari-
ate polynomials, is handled separately also, using partial
fraction expansion to reduce rational function to a sum of
simpler expressions.

Integration tables

For elementary functions, Yacas uses integration tables. For
instance, the fact that the anti-derivative of cos x is sin x is
declared in an integration table.

For the purpose of setting up the integration table, a few dec-
laration functions have been defined, which use some generalized
pattern matchers to be more flexible in recognizing expressions
that are integrable.

Integrating simple functions of a variable

For functions like sin x the anti-derivative can be declared with
the function IntFunc.

The calling sequence for IntFunc is

IntFunc(variable,pattern,antiderivative)

For instance, for the function cos x there is a declaration:

IntFunc(x,Cos(_x),Sin(x));

The fact that the second argument is a pattern means that
each occurrence of the variable to be matched should be referred
to as x, as in the example above.

IntFunc generalizes the integration implicitly, in that it will
set up the system to actually recognize expressions of the form
cos (ax + b), and return sin(ax+b)

a
automatically. This means

that the variables a and b are reserved, and can not be used in
the pattern. Also, the variable used (in this case, x is actually
matched to the expression passed in to the function, and the
variable var is the real variable being integrated over. To clarify:
suppose the user wants to integrate cos (cy + d) over y, then the
following variables are set:

• a = c

• b = d

• x = ay + b

• var = x

When functions are multiplied by constants, that situation is
handled by the integration rule that can deal with univariate
polynomials multiplied by functions, as a constant is a polyno-
mial of degree zero.

Integrating functions containing expres-
sions of the form ax2 + b

There are numerous expressions containing sub-expressions of
the form ax2 + b which can easily be integrated.

The general form for declaring anti-derivatives for such ex-
pressions is:

IntPureSquare(variable, pattern, sign2, sign0,

antiderivative)

Here IntPureSquare uses MatchPureSquared to match the ex-
pression.

The expression is searched for the pattern, where the variable
can match to a sub-expression of the form ax2+b, and for which
both a and b are numbers and asign2 > 0 and bsign0 > 0.

As an example:

IntPureSquare(x,num_IsFreeOf(var)/(_x),

1,1,(num/(a*Sqrt(b/a)))*

ArcTan(var/Sqrt(b/a)));

declares that the anti-derivative of c
ax2+b

is

c

a
√

b
a

arctan
x√

b
a

,

if both a and b are positive numbers.

1.4 Transforms

Currently the only tranform defined is LaplaceTransform,
which has the calling convention:

• LaplaceTransform(var1,var2,func)

It has been setup much like the integration algorithm. If
the transformation algorithm cannot perform the transform, the
expression (in theory) is returned unsimplified. Some cases may
still erroneously return Undefined or Infinity.

The LaplaceTransform algorithm

This section describes the steps taken in doing a Laplace trans-
form.

General structure

LaplaceTransform is immediately handed off to LapTran.
This is done because if the last LapTran rule is met, the
Laplace transform couldn’t be found and it can then return
LaplaceTransform unevaluated.

6

Operational Properties

The first rules that are matched against utilize the various op-
erational properties of LaplaceTransform, such as:

• Linearity Properties

• Shift properties, i.e. multiplying the function by an expo-
nential

• yxn = (−1)n
(

∂n

∂xn LaplaceTransform (x, x2, y)
)

• y
x

=
∫∞

x2
LapTran (x, x2, y) dx2

The last operational property dealing with integration is
not yet fully bug-tested, it sometimes returns Undefined or
Infinity if the integral returns such.

Transform tables

For elementary functions, Yacas uses transform tables. For in-
stance, the fact that the Laplace transform of cos t is s

s2+1
is

declared in a transform table.
For the purpose of setting up the transform table, a few decla-

ration functions have been defined, which use some generalized
pattern matchers to be more flexible in recognizing expressions
that are transformable.

Transforming simple functions

For functions like sin t the transform can be declared with the
function LapTranDef.

The calling sequence for LapTranDef is

LapTranDef(in, out)

Currently in must be a variable of t and out must be a
function of s. For instance, for the function cos t there is a
declaration:

LapTranDef(Cos(_t), s/(s^2+1));

The fact that the first argument is a pattern means that each
occurrence of the variable to be matched should be referred to
as t, as in the example above.

LapTranDef generalizes the transform implicitly, in that it
will set up the system to actually recognize expressions of the
form cos at and cos t

a
, and return the appropriate answer. The

way this is done is by three separate rules for case of t itself,
a*t and t/a. This is similar to the MatchLinear function that
Integrate uses, except LaplaceTransforms must have b=0.

Further Directions

Currenlty sin t cos t cannot be transformed, because it requires
a convolution integral. This will be implemented soon. The
inverse laplace transform will be implement soon also.

1.5 Finding real roots of polynomi-
als

This section deals with finding roots of polynomials in the field
of real numbers.

Without loss of generality, the coefficients ai of a polynomial

p = anxn + ... + a0

can be considered to be rational numbers, as real-valued num-
bers are truncated in practice, when doing calculations on a
computer.

Assuming that the leading coefficient an = 1, the polynomial
p can also be written as

p = pn1
1 ...pnm

m ,

where pi are the m distinct irreducible monic factors of the form
pi = x − xi, and ni are multiplicities of the factors. Here the
roots are xi and some of them may be complex. However, com-
plex roots of a polynomial with real coefficients always come in
conjugate pairs, so the corresponding irreducible factors should
be taken as pi = x2 + cix + di. In this case, there will be less
than m irreducible factors, and all coefficients will be real.

To find roots, it is useful to first remove the multiplicities,
i.e. to convert the polynomial to one with multiplicity 1 for
all irreducible factors, i.e. find the polynomial p1...pm. This is
called the “square-free part” of the original polynomial p.

The square-free part of the polynomial p can be easily found
using the polynomial GCD algorithm. The derivative of a poly-
nomial p can be written as:

p′ =

m∑
i=1

pn1
1 ...nip

ni−1
i

(
∂

∂x
pi

)
...pnm

m .

Not simplified
The g.c.d. of p and p′ equals

Gcd
(
p, p′

)
=

m∏
i=1

pni−1
i .

So if we divide p by Gcd (p, p′), we get the square-free part of
the polynomial:

SquareFree (p) ≡ Div
(
p, Gcd

(
p, p′

))
= p1...pm.

In what follows we shall assume that all polynomials are
square-free with rational coefficients. Given any polynomial,
we can apply the functions SquareFree and Rationalize and
reduce it to this form. The function Rationalize converts all
numbers in an expression to rational numbers. The function
SquareFree returns the square-free part of a polynomial. For
example:

In> Expand((x+1.5)^5)

Out> x^5+7.5*x^4+22.5*x^3+33.75*x^2+25.3125*x

+7.59375;

In> SquareFree(Rationalize(%))

Out> x/5+3/10;

In> Simplify(%*5)

Out> (2*x+3)/2;

In> Expand(%)

Out> x+3/2;

Sturm sequences

For a polynomial p (x) of degree n, the Sturm sequence p0, p1,
... pn is defined by the following equations (following the book
[Davenport et al. 1989]):

p0 = p (x) ,

p1 = p′ (x) ,

pi = −remainder (pi−2, pi−1) ,

where remainder (p, q) is the remainder of division of polynomi-
als p, q.

The polynomial p can be assumed to have no multiple fac-
tors, and thus p and p′ are relatively prime. The sequence of
polynomials in the Sturm sequence are (up to a minus sign) the

7

consecutive polynomials generated by Euclid’s algorithm for the
calculation of a greatest common divisor for p and p′, so the last
polynomial pn will be a constant.

In Yacas, the function SturmSequence(p) returns the Sturm
sequence of p, assuming p is a univariate polynomial in x, p =
p (x).

Given a Sturm sequence S = SturmSequence (p) of a poly-
nomial p, the variation in the Sturm sequence V (S, y) is the
number of sign changes in the sequence p0, p1 , ... , pn, evalu-
ated at point y, and disregarding zeroes in the sequence.

Sturm’s theorem states that if a and b are two real numbers
which are not roots of p, and a < b, then the number of roots
between a and b is V (S, a)− V (S, b). A proof can be found in
Knuth, The Art of Computer Programming, Volume 2, Seminu-
merical Algorithms.

For a and b, the values −∞ and ∞ can also be used. In
these cases, V (S,∞) is the number of sign changes between
the leading coefficients of the elements of the Sturm sequence,
and V (S,−∞) the same, but with a minus sign for the leading
coefficients for which the degree is odd.

Thus, the number of real roots of a polynomial is V (S,−∞)−
V (S,∞). The function NumRealRoots(p) returns the number
of real roots of p.

The function SturmVariations(S,y) returns the number of
sign changes between the elements in the Sturm sequence S, at
point x = y:

In> p:=x^2-1

Out> x^2-1;

In> S:=SturmSequence(p)

Out> {x^2-1,2*x,1};

In> SturmVariations(S,-Infinity)- \

SturmVariations(S,Infinity)

Out> 2;

In> NumRealRoots(p)

Out> 2;

In> p:=x^2+1

Out> x^2+1;

In> S:=SturmSequence(p)

Out> {x^2+1,2*x,-1};

In> SturmVariations(S,-Infinity)- \

SturmVariations(S,Infinity)

Out> 0;

In> NumRealRoots(p)

Out> 0;

Finding bounds on real roots

Armed with the variations in the Sturm sequence given in the
previous section, we can now find the number of real roots in
a range (a,b), for a < b. We can thus bound all the roots by
subdividing ranges until there is only one root in each range. To
be able to start this process, we first need some upper bounds
of the roots, or an interval that contains all roots. Davenport
gives limits on the roots of a polynomial given the coefficients
of the polynomial, as

|a| ≤ max

(∣∣∣an−1

an

∣∣∣ ,√∣∣∣an−2

an

∣∣∣, ..., n

√∣∣∣ a0

an

∣∣∣) ,

for all real roots a of p. This gives the upper bound on the
absolute value of the roots of the polynomial in question. if
p (0) 6= 0, the minimum bound can be obtained also by consid-
ering the upper bound of p

(
1
x

)
xn, and taking 1

bound
.

We thus know that given

amax = MaximumBound (p)

and
amin = MinimumBound (p)

for all roots a of polynomial, either

−amax ≤ a ≤ −amin

or
amin ≤ a ≤ amax.

Now we can start the search for the bounds on all roots. The
search starts with initial upper and lower bounds on ranges, sub-
dividing ranges until a range contains only one root, and adding
that range to the resulting list of bounds. If, when dividing a
range, the middle of the range lands on a root, care must be
taken, because the bounds should not be on a root themselves.
This can be solved by observing that if c is a root, p contains
a factor x− c, and thus taking p (x + c) results in a polynomial
with all the roots shifted by a constant −c, and the root c moved
to zero, e.g. p (x + c) contains a factor x. Thus a new ranges
to the left and right of c can be determined by first calculating
the minimum bound M of p(x+c)

x
. When the original range was

(a,b), and c = a+b
2

is a root, the new ranges should become
(a,c−M) and (c + M ,b).

In Yacas, MimimumBound(p) returns the lower bound de-
scribed above, and MaximumBound(p) returns the upper bound
on the roots in p. These bounds are returned as rational num-
bers. BoundRealRoots(p) returns a list with sublists with the
bounds on the roots of a polynomial:

In> p:=(x+20)*(x+10)

Out> (x+20)*(x+10);

In> MinimumBound(p)

Out> 10/3;

In> MaximumBound(p)

Out> 60;

In> BoundRealRoots(p)

Out> {{-95/3,-35/2},{-35/2,-10/3}};

In> N(%)

Out> {{-31.6666666666,-17.5},

{-17.5,-3.3333333333}};

It should be noted that since all calculations are done with
rational numbers, the algorithm for bounding the roots is very
robust. This is important, as the roots can be very unstable for
small variations in the coefficients of the polynomial in question
(see Davenport).

Finding real roots given the bounds on the
roots

Given the bounds on the real roots as determined in the previous
section, two methods for finding roots are available: the secant
method or the Newton method, where the function is locally
approximated by a line, and extrapolated to find a new estimate
for a root. This method converges quickly when “sufficiently”
near a root, but can easily fail otherwise. The secant method
can easily send the search to infinity.

The bisection method is more robust, but slower. It works
by taking the middle of the range, and checking signs of the
polynomial to select the half-range where the root is. As there
is only one root in the range (a,b), in general it will be true that
p (a) p (b) < 0, which is assumed by this method.

Yacas finds the roots by first trying the secant method, start-
ing in the middle of the range, c = a+b

2
. If this fails the bisection

method is tried.
The function call to find the real roots of a polynomial p in

variable x is FindRealRoots(p), for example:

8

In> p:=Expand((x+3.1)*(x-6.23))

Out> x^2-3.13*x-19.313;

In> FindRealRoots(p)

Out> {-3.1,6.23};

In> p:=Expand((x+3.1)^3*(x-6.23))

Out> x^4+3.07*x^3-29.109*x^2-149.8199\

In> *x-185.59793;

In> p:=SquareFree(Rationalize(\

In> Expand((x+3.1)^3*(x-6.23))))

Out> (-160000*x^2+500800*x+3090080)/2611467;

In> FindRealRoots(p)

Out> {-3.1,6.23};

9

Chapter 2

Number theory algorithms

This chapter describes the algorithms used for computing var-
ious number-theoretic functions. We call “number-theoretic”
any function that takes integer arguments, produces integer val-
ues, and is of interest to number theory.

2.1 Euclidean GCD algorithms

The main algorithm for the calculation of the GCD of two
integers is the binary Euclidean algorithm. It is based on
the following identities: Gcd (a, b) = Gcd (b, a), Gcd (a, b) =
Gcd (a− b, b), and for odd b, Gcd (2a, b) = Gcd (a, b). Thus we
can produce a sequence of pairs with the same GCD as the orig-
inal two numbers, and each pair will be at most half the size
of the previous pair. The number of steps is logarithmic in the
number of digits in a, b. The only operations needed for this al-
gorithm are binary shifts and subtractions (no modular division
is necessary). The low-level function for this is MathGcd.

To speed up the calculation when one of the numbers is much
larger than another, one could use the property Gcd (a, b) =
Gcd (a, a mod b). This will introduce an additional modular di-
vision into the algorithm; this is a slow operation when the
numbers are large.

2.2 Prime numbers: the Miller-
Rabin test and its improve-
ments

Small prime numbers p <= 65537 are simply stored in a pre-
computed table as an array of bits; the bits corresponding to
prime numbers are set to 1. This makes primality testing on
small numbers very quick. This is implemented by the function
FastIsPrime.

Primality of larger numbers is tested by the function IsPrime

that uses the Miller-Rabin algorithm. 1 This algorithm is de-
terministic (guaranteed correct within a certain running time)
for “small” numbers n < 3.4 · 1013 and probabilistic (correct
with high probability but not guaranteed) for larger numbers.
In other words, the Miller-Rabin test could sometimes flag a
large number n as prime when in fact n is composite; but the
probability for this to happen can be made extremely small.
The basic reference is [Rabin 1980]. We also implemented some
of the improvements suggested in [Davenport 1992].

The idea of the Miller-Rabin algorithm is to improve the
Fermat primality test. If n is prime, then for any x we have
Gcd (n, x) = 1. Then by Fermat’s “little theorem”, xn−1 ≡
1 mod n. (This is really a simple statement; if n is prime, then

1Initial implementation and documentation was supplied by Chris-
tian Obrecht.

n−1 nonzero remainders modulo n: 1, 2, ..., n−1 form a cyclic
multiplicative group.) Therefore we pick some “base” integer x
and compute xn−1 mod n; this is a quick computation even if n
is large. If this value is not equal to 1 for some base x, then n is
definitely not prime. However, we cannot test every base x < n;
instead we test only some x, so it may happen that we miss the
right values of x that would expose the non-primality of n. So
Fermat’s test sometimes fails, i.e. says that n is a prime when
n is in fact not a prime. Also there are infinitely many integers
called “Carmichael numbers” which are not prime but pass the
Fermat test for every base.

The Miller-Rabin algorithm improves on this by using the
property that for prime n there are no nontrivial square roots
of unity in the ring of integers modulo n (this is Lagrange’s
theorem). In other words, if x2 ≡ 1 mod n for some x, then x
must be equal to 1 or −1 modulo n. (Since n − 1 is equal to
−1 modulo n, we have n − 1 as a trivial square root of unity
modulo n. Note that even if n is prime there may be nontrivial
divisors of 1, for example, 2 · 49 ≡ 1 mod 97.)

We can check that n is odd before applying any primality test.
(A test n2 ≡ 1 mod 24 guarantees that n is not divisible by 2
or 3. For large n it is faster to first compute n mod 24 rather
than n2, or test n directly.) Then we note that in Fermat’s test
the number n−1 is certainly a composite number because n−1
is even. So if we first find the largest power of 2 in n − 1 and
decompose n − 1 = 2rq with q odd, then xn−1 ≡ a2r

mod n
where a ≡ xq mod n. (Here r ≥ 1 since n is odd.) In other
words, the number xn−1 mod n is obtained by repeated squaring
of the number a. We get a sequence of r repeated squares: a, a2,
..., a2r

. The last element of this sequence must be 1 if n passes
the Fermat test. (If it does not pass, n is definitely a composite
number.) If n passes the Fermat test, the last-but-one element

a2r−1
of the sequence of squares is a square root of unity modulo

n. We can check whether this square root is non-trivial (i.e. not
equal to 1 or −1 modulo n). If it is non-trivial, then n definitely
cannot be a prime. If it is trivial and equal to 1, we can check
the preceding element, and so on. If an element is equal to −1,
we cannot say anything, i.e. the test passes (n is “probably a
prime”).

This procedure can be summarized like this:

1. Find the largest power of 2 in n− 1 and an odd number q
such that n− 1 = 2rq.

2. Select the ”base number” x < n. Compute the sequence
a ≡ xq mod n, a2, a4, ..., a2r

by repeated squaring modulo
n. This sequence contains at least two elements since r ≥ 1.

3. If a = 1 or a = n−1, the test passes on the base number x.
Otherwise, the test passes if at least one of the elements of
the sequence is equal to n− 1 and fails if none of them are
equal to n − 1. This simplified procedure works because
the first element that is equal to 1 must be preceded by a

10

−1, or else we would find a nontrivial root of unity.

Here is a more formal definition. An odd integer n is called

strongly-probably-prime for base b if bq ≡ 1 mod n or bq·2i

≡
(n− 1) mod n for some i such that 0 ≤ i < r, where q and r are
such that q is odd and n− 1 = q · 2r.

A practical application of this procedure needs to select par-
ticular base numbers. It is advantageous (according to [Pomer-
ance et al. 1980]) to choose prime numbers b as bases, because
for a composite base b = pq, if n is a strong pseudoprime for both
p and q, then it is very probable that n is a strong pseudoprime
also for b, so composite bases rarely give new information.

An additional check suggested by [Davenport 1992] is acti-
vated if r > 2 (i.e. if n ≡ 1 mod 8 which is true for only 1/4 of all

odd numbers). If i ≥ 1 is found such that bq·2i

≡ (n− 1) mod n,

then bq·2i−1
is a square root of −1 modulo n. If n is prime, there

may be only two different square roots of −1. Therefore we
should store the set of found values of roots of −1; if there are
more than two such roots, then we woill find some roots s1, s2 of
−1 such that s1 +s2 6= 0 mod n. But s2

1−s2
2 ≡ 0 mod n. There-

fore n is definitely composite, e.g. Gcd (s1 + s2, n) > 1. This
check costs very little computational effort but guards against
some strong pseudoprimes.

Yet another small improvement comes from [Damgard et al.
1993]. They found that the strong primality test sometimes
(rarely) passes on composite numbers n for more than 1

8
of all

bases x < n if n is such that either 3n + 1 or 8n + 1 is a perfect
square, or if n is a Carmichael number. Checking Carmichael
numbers is slow, but it is easy to show that if n is a large enough
prime number, then neither 3n + 1, nor 8n + 1, nor any sn + 1
with small integer s can be a perfect square. [If sn + 1 = r2,
then sn = (r − 1) (r + 1).] Testing for a perfect square is quick
and does not slow down the algorithm. This is however not
implemented in Yacas because it seems that perfect squares are
too rare for this improvement to be significant.

If an integer is not “strongly-probably-prime” for a given base
b, then it is a composite number. However, the converse state-
ment is false, i.e. “strongly-probably-prime” numbers can actu-
ally be composite. Composite strongly-probably-prime numbers
for base b are called strong pseudoprimes for base b. There is
a theorem that if n is composite, then among all numbers b
such that 1 < b < n, at most one fourth are such that n is
a strong pseudoprime for base b. Therefore if n is strongly-
probably-prime for many bases, then the probability for n to be
composite is very small.

For numbers less than B = 34155071728321, exhaustive 2

computations have shown that there are no strong pseudoprimes
simultaneously for bases 2, 3, 5, 7, 11, 13 and 17. This gives a
simple and reliable primality test for integers below B. If n ≥ B,
the Rabin-Miller method consists in checking if n is strongly-
probably-prime for k base numbers b. The base numbers are
chosen to be consecutive “weak pseudoprimes” that are easy to
generate (see below the function NextPseudoPrime).

In the implemented routine RabinMiller, the number of bases
k is chosen to make the probability of erroneously passing the
test p < 10−25. (Note that this is not the same as the probability
to give an incorrect answer, because all numbers that do not pass
the test are definitely composite.) The probability for the test to
pass mistakenly on a given number is found as follows. Suppose
the number of bases k is fixed. Then the probability for a given
composite number to pass the test is less than pf = 4−k. The
probability for a given number n to be prime is roughly pp = 1

ln n

and to be composite pc = 1− 1
ln n

. Prime numbers never fail the
test. Therefore, the probability for the test to pass is pfpc + pp

2And surely exhausting.

and the probability to pass erroneously is

p =
pfpc

pfpc + pp
< ln n · 4−k.

To make p < ε, it is enough to select k = 1
ln 4

(ln n− ln ε).
Before calling MillerRabin, the function IsPrime performs

two quick checks: first, for n ≥ 4 it checks that n is not divisible
by 2 or 3 (all primes larger than 4 must satisfy this); second, for
n > 257, it checks that n does not contain small prime factors
p ≤ 257. This is checked by evaluating the GCD of n with the
precomputed product of all primes up to 257. The computation
of the GCD is quick and saves time in case a small prime factor
is present.

There is also a function NextPrime(n) that returns the small-
est prime number larger than n. This function uses a sequence
5,7,11,13,... generated by the function NextPseudoPrime. This
sequence contains numbers not divisible by 2 or 3 (but perhaps
divisible by 5,7,...). The function NextPseudoPrime is very fast
because it does not perform a full primality test.

The function NextPrime however does check each of these
pseudoprimes using IsPrime and finds the first prime number.

2.3 Factorization of integers

When we find from the primality test that an integer n is com-
posite, we usually do not obtain any factors of n. Factorization
is implemented by functions Factor and Factors. Both func-
tions use the same algorithms to find all prime factors of a given
integer n. (Before doing this, the primality checking algorithm
is used to detect whether n is a prime number.) Factorization
consists of repeatedly finding a factor, i.e. an integer f such
that n mod f = 0, and dividing n by f . (Of course, each fastor
f needs to be factorized too.)

First we determine whether the number n contains “small”
prime factors p ≤ 257. A quick test is to find the GCD of n and
the product of all primes up to 257: if the GCD is greater than
1, then n has at least one small prime factor. (The product of
primes is precomputed.) If this is the case, the trial division
algorithm is used: n is divided by all prime numbers p ≤ 257
until a factor is found. NextPseudoPrime is used to generate the
sequence of candidate divisors p.

After separating small prime factors, we test whether the
number n is an integer power of a prime number, i.e. whether
n = ps for some prime number p and an integer s ≥ 1. This is
tested by the following algorithm. We already know that n is not
prime and that n does not contain any small prime factors up to
257. Therefore if n = ps, then p > 257 and 2 ≤ s < s0 = ln n

ln 257
.

In other words, we only need to look for powers not greater
than s0. This number can be approximated by the “integer
logarithm” of n in base 257 (routine IntLog(n, 257)).

Now we need to check whether n is of the form ps for s = 2,
3, ..., s0. Note that if for example n = p24 for some p, then the
square root of n will already be an integer,

√
n = p12. Therefore

it is enough to test whether s
√

n is an integer for all prime values
of s up to s0, and then we will definitely discover whether n is a
power of some other integer. The testing is performed using the
integer n-th root function IntNthRoot which quickly computes
the integer part of n-th root of an integer number. If we discover
that n has an integer root p of order s, we have to check that p
itself is a prime power (we use the same algorithm recursively).
The number n is a prime power if and only if p is itself a prime
power. If we find no integer roots of orders s ≤ s0, then n is not
a prime power.

If the number n is not a prime power, the Pollard “rho” al-
gorithm is applied [Pollard 1978]. The Pollard “rho” algorithm

11

takes an irreducible polynomial, e.g. p (x) = x2 +1 and builds a
sequence of integers xk+1 ≡ p (xk) mod n, starting from x0 = 2.
For each k, the value x2k −xk is attempted as possibly contain-
ing a common factor with n. The GCD of x2k − xk with n is
computed, and if Gcd (x2k − xk, n) > 1, then that GCD value
divides n.

The idea behind the “rho” algorithm is to generate an ef-
fectively random sequence of trial numbers tk that may have a
common factor with n. The efficiency of this algorithm is deter-
mined by the size of the smallest factor p of n. Suppose p is the
smallest prime factor of n and suppose we generate a random
sequence of integers tk such that 1 ≤ tk < n. It is clear that,
on the average, a fraction 1

p
of these integers will be divisible

by p. Therefore (if tk are truly random) we should need on the
average p tries until we find tk which is accidentally divisible by
p. In practice, of course, we do not use a truly random sequence
and the number of tries before we find a factor p may be sig-
nificantly different from p. The quadratic polynomial seems to
help reduce the number of tries in most cases.

But the Pollard “rho” algorithm may actually enter an in-
finite loop when the sequence xk repeats itself without giving
any factors of n. For example, the unmodified “rho” algorithm
starting from x0 = 2 loops on the number 703. The loop is
detected by comparing x2k and xk. When these two quantities
become equal to each other for the first time, the loop may not
yet have occurred so the value of GCD is set to 1 and the se-
quence is continued. But when the equality of x2k and xk occurs
many times, it indicates that the algorithm has entered a loop.
A solution is to randomly choose a different starting number x0

when a loop occurs and try factoring again, and keep trying new
random starting numbers between 1 and n until a non-looping
sequence is found. The current implementation stops after 100
restart attempts and prints an error message, “failed to factorize
number”.

A better (and faster) integer factoring algorithm needs to be
implemented in Yacas.

Modern factoring algorithms are all probabilistic (i.e. they
do not guarantee a particular finishing time) and fall into three
categories:

1. Methods that work well (i.e. quickly) if there is a relatively
small factor p of n (even if n itself is large). Pollard’s
“rho” algorithm belongs to this category. The fastest in
this category is Lenstra’s elliptic curves method (ECM).

2. Methods that work equally quickly regardless of the size of
factors (but slower with larger n). These are the continued
fractions method and the various “sieve” methods. The
current best is the “General Number Field Sieve” (GNFS)
but it is quite a complicated algorithm requiring operations
with high-order algebraic numbers. The next best one is
the “Multiple Polynomial Quadratic Sieve” (MPQS).

3. Methods that are suitable only for numbers of special “in-

teresting” form, e.g. Fermat numbers 22k

− 1 or generally
numbers of the form rs + a where s is large but r and a
are very small integers. The best method seems to be the
“Special Number Field Sieve” which is a faster variant of
the GNFS adapted to the problem.

There is ample literature describing these algorithms.

2.4 The Jacobi symbol

A number m is a “quadratic residue modulo n” if there exists a
number k such that k2 ≡ m mod n.

The Legendre symbol (m/n) is defined as +1 if m is a
quadratic residue modulo n and −1 if it is a non-residue. The
Legendre symbol is equal to 0 if m

n
is an integer.

The Jacobi symbol
(

m
n

)
is defined as the product of the Leg-

endre symbols of the prime factors fi of n = fp1
1 ...fps

s ,(
m

n

)
≡
(

m

f1

)p1

...

(
m

fs

)ps

.

(Here we used the same notation
(

a
b

)
for the Legendre and the

Jacobi symbols; this is confusing but seems to be the current
practice.) The Jacobi symbol is equal to 0 if m, n are not
mutually prime (have a common factor). The Jacobi symbol
and the Legendre symbol have values +1, −1 or 0.

The Jacobi symbol can be efficiently computed without know-
ing the full factorization of the number n. The currently used
method is based on the following four identities for the Jacobi
symbol:

1.
(

a
1

)
= 1.

2.
(

2
b

)
= (−1)

b2−1
8 .

3.
(

ab
c

)
=
(

a
c

) (
b
c

)
.

4. If a ≡ b mod c, then
(

a
c

)
=
(

b
c

)
.

5. If a, b are both odd, then
(

a
b

)
=
(

b
a

)
(−1)(a−1) b−1

4 .

Using these identities, we can recursively reduce the com-
putation of the Jacobi symbol

(
a
b

)
to the computation of the

Jacobi symbol for numbers that are on the average half as large.
This is similar to the fast “binary” Euclidean algorithm for the
computation of the GCD. The number of levels of recursion is
logarithmic in the arguments a, b.

More formally, Jacobi symbol
(

a
b

)
is computed by the follow-

ing algorithm. (The number b must be an odd positive integer,
otherwise the result is undefined.)

1. If b = 1, return 1 and stop. If a = 0, return 0 and stop.
Otherwise, replace

(
a
b

)
by
(

a mod b
b

)
(identity 4).

2. Find the largest power of 2 that divides a. Say, a = 2sc

where c is odd. Replace
(

a
b

)
by
(

c
b

)
(−1)s b2−1

8 (identities
2 and 3).

3. Now that c < b, replace
(

c
b

)
by
(

b
c

)
(−1)(b−1) c−1

4 (identity
5).

4. Continue to step 1.

Note that the arguments a, b may be very large integers and
we should avoid performing multiplications of these numbers.

We can compute (−1)(b−1) c−1
4 without multiplications. This

expression is equal to 1 if either b or c is equal to 1 mod 4; it
is equal to −1 only if both b and c are equal to 3 mod 4. Also,

(−1)
b2−1

8 is equal to 1 if either b ≡ 1 or b ≡ 7 mod 8, and it
is equal to −1 if b ≡ 3 or b ≡ 5 mod 8. Of course, if s is even,
none of this needs to be computed.

2.5 Integer partitions

A partition of an integer n is a way of writing n as the sum
of positive integers, where the order of these integers is unim-
portant. For example, there are 3 ways to write the number 3
in this way: 3 = 1 + 1 + 1, 3 = 1 + 2, 3 = 3. The function
PartitionsP counts the number of such partitions.

12

Large n

The first algorithm used to compute this function uses the
Rademacher-Hardy-Ramanujan (RHR) theorem and is efficient
for large n. (See for example [Ahlgren et al. 2001].) The number
of partitions P (n) is equal to an infinite sum:

P (n) =
1

π
√

2

∞∑
k=1

√
kA (k, n) S (k, n) ,

where the functions A and S are defined as follows:

S (k, n) ≡ ∂

∂n

sinh π
k

√
2
3

(
n− 1

24

)√
n− 1

24

Not simplified

A (k, n) ≡
k∑

l=1

δ (Gcd (l, k) , 1) exp
(
−2πı

ln

k
+ πıB (k, l)

)
,

where δ (x, y) is the Kronecker delta function (so that the sum-
mation goes only over integers l which are mutually prime with
k) and B is defined by

B (k, l) ≡
k−1∑
j=1

j

k

(
l
j

k
−
⌊
l
j

k

⌋
− 1

2

)
.

The first term of the series gives, at large n, the Hardy-
Ramanujan asymptotic estimate,

P (n) ∼ P0 (n) ≡ 1

4n
√

3
exp

(
π

√
2n

3

)
.

The absolute value of each term decays quickly, so after O
(√

n
)

terms the series gives an answer that is very close to the integer
result.

There exist estimates of the error of this series, but they are
complicated. The series is sufficiently well-behaved and it is eas-
ier to determine the truncation point heuristically. Each term
of the series is either 0 (when all terms in A (k, n) happen to
cancel) or has a magnitude which is not very much larger than
the magnitude of the previous nonzero term. (But the series is
not actually monotonic.) In the current implementation, the se-
ries is truncated when

∣∣A (k, n) S (n)
√

k
∣∣ becomes smaller than

0.1 for the first time; in any case, the maximum number of cal-
culated terms is 5 +

√
n

2
. One can show that asymptotically for

large n, the required number of terms is less than µ
ln µ

, where

µ ≡ π
√

2n
3

.
[Ahlgren et al. 2001] mention that there exist explicit con-

stants B1 and B2 such that∣∣∣∣∣P (n)−
B1
√

n∑
k=1

A (k, n)

∣∣∣∣∣ < B2n
− 1

4 .

The floating-point precision necessary to obtain the integer
result must be at least the number of digits in the first term
P0 (n), i.e.

Prec >
π
√

2
3
n− ln 4n

√
3

ln 10
.

However, Yacas currently uses the fixed-point precision model.
Therefore, the current implementation divides the series by
P0 (n) and computes all terms to Prec digits.

The RHR algorithm requires O
((

n
ln n

) 3
2

)
operations, of

which O
(

n
ln n

)
are long multiplications at precision Prec ∼

O
(√

n
)

digits. The computational cost is therefore

O
(

n
ln n

M
(√

n
))

.

Small n

The second, simpler algorithm involves a recurrence relation

Pn =

n∑
k=1

(−1)k+1
(
P

n−k 3k−1
2

+ P
n−k 3k+1

2

)
.

The sum can be written out as

P (n− 1) + P (n− 2)− P (n− 5)− P (n− 7) + ...,

where 1, 2, 5, 7, ... is the “generalized pentagonal sequence”
generated by the pairs k 3k−1

2
, k 3k+1

2
for k = 1, 2, ... The recur-

rence starts from P (0) = 1, P (1) = 1. (This is implemented as
PartitionsP’recur.)

The sum is actually not over all k up to n but is truncated
when the pentagonal sequence grows above n. Therefore, it
contains only O

(√
n
)

terms. However, computing P (n) using
the recurrence relation requires computing and storing P (k) for
all 1 ≤ k ≤ n. No long multiplications are necessary, but the
number of long additions of numbers with Prec ∼ O

(√
n
)

digits

is O
(
n

3
2

)
. Therefore the computational cost is O

(
n2
)
. This

is asymptotically slower than the RHR algorithm even if a slow
O
(
n2
)

multiplication is used. With internal Yacas math, the
recurrence relation is faster for n < 300 or so, and for larger n
the RHR algorithm is faster.

2.6 Miscellaneous functions

The function Divisors currently returns the number of divisors
of integer, while DivisorsSum returns the sum of these divisors.
(The current algorithms need to factor the number.) The fol-
lowing theorem is used:

Let pk1
1 ...pkr

r be the prime factorization of n, where r is the
number of prime factors and kr is the multiplicity of the r-th
factor. Then

Divisors (n) = (k1 + 1) ... (kr + 1) ,

DivisorsSum (n) =
pk1+1
1 − 1

p1 − 1
...

pkr+1
r − 1

pr − 1
.

The functions ProperDivisors and ProperDivisorsSum are
functions that do the same as the above functions, except they
do not consider the number n as a divisor for itself. These
functions are defined by:

ProperDivisors (n) = Divisors (n)− 1,

ProperDivisorsSum (n) = DivisorsSum (n)− n.

Another number-theoretic function is Moebius, defined as fol-
lows: Moebius (n) = (−1)r if no factors of n are repeated,
Moebius (n) = 0 if some factors are repeated, and Moebius (n) =
1 if n = 1. This again requires to factor the number n
completely and investigate the properties of its prime factors.
From the definition, it can be seen that if n is prime, then
Moebius (n) = −1. The predicate IsSquareFree(n) then re-
duces to Moebius (n) 6= 0, which means that no factors of n are
repeated.

2.7 Gaussian integers

A “Gaussian integer” is a complex number of the form z = a+bı,
where a and b are ordinary (rational) integers. 3 The ring of

3To distinguish ordinary integers from Gaussian integers, the ordi-
nary integers (with no imaginary part) are called ”rational integers”.

13

Gaussian integers is usually denoted by Z[ı] in the mathematical
literature. It is an example of a ring of algebraic integers.

The function GaussianNorm computes the norm N (z) = a2 +
b2 of z. The norm plays a fundamental role in the arithmetic of
Gaussian integers, since it has the multiplicative property:

N (z.w) = N (z) .N (w) .

A unit of a ring is an element that divides any other element
of the ring. There are four units in the Gaussian integers: 1,
−1, ı, −ı. They are exactly the Gaussian integers whose norm
is 1. The predicate IsGaussianUnit tests for a Gaussian unit.

Two Gaussian integers z and w are “associated” is z
w

is a
unit. For example, 2 + ı and −1 + 2ı are associated.

A Gaussian integer is called prime if it is only divisible by the
units and by its associates. It can be shown that the primes in
the ring of Gaussian integers are:

1. 1 + i and its associates.

2. The rational (ordinary) primes of the form 4n + 3.

3. The factors a+bı of rational primes p of the form p = 4n+1,
whose norm is p = a2 + b2.

For example, 7 is prime as a Gaussian integer, while 5 is not,
since 5 = (2 + ı) (2− ı). Here 2 + ı is a Gaussian prime.

The ring of Gaussian integers is an example of an Euclidean
ring, i.e. a ring where there is a division algorithm. This makes
it possible to compute the greatest common divisor using Eu-
clid’s algorithm. This is what the function GaussianGcd com-
putes.

As a consequence, one can prove a version of the fundamental
theorem of arithmetic for this ring: The expression of a Gaussian
integer as a product of primes is unique, apart from the order
of primes, the presence of units, and the ambiguities between
associated primes.

The function GaussianFactors finds this expression of a
Gaussian integer z as the product of Gaussian primes, and re-
turns the result as a list of pairs {p,e}, where p is a Gaussian
prime and e is the corresponding exponent. To do that, an
auxiliary function called GaussianFactorPrime is used. This
function finds a factor of a rational prime of the form 4n + 1.
We compute a ≡ (2n)! (mod p). By Wilson’s theorem a2

is congruent to −1 (mod p), and it follows that p divides
(a + ı) (a− ı) = a2 + 1 in the Gaussian integers. The desired
factor is then the GaussianGcd of a + ı and p. If the result is
a + bı, then p = a2 + b2.

If z is a rational (i.e. real) integer, we factor z in the Gaus-
sian integers by first factoring it in the rational integers, and
after that by factoring each of the integer prime factors in the
Gaussian integers.

If z is not a rational integer, we find its possible Gaussian
prime factors by first factoring its norm N (z) and then com-
puting the exponent of each of the factors of N (z) in the de-
composition of z.

References for Gaussian integers

1. G. H. Hardy and E. M. Wright, An Introduction to the
Theory of Numbers. Oxford University Press (1945).

2. H. Pollard, The theory of Algebraic Numbers. Wiley, New
York (1965).

14

Chapter 3

A simple factorization algorithm for
univariate polynomials

This section discusses factoring polynomials using arithmetic
modulo prime numbers. Information was used from D. Knuth,
The Art of Computer Programming, Volume 2, Seminumeri-
cal Algorithms and J.H. Davenport et. al., Computer Algebra,
SYSTEMS AND ALGORITHMS FOR ALGEBRAIC COMPU-
TATION.

A simple factorization algorithm is developed for univariate
polynomials. This algorithm is implemented as the function
BinaryFactors. The algorithm was named the binary factoring
algorithm since it determines factors to a polynomial modulo
2n for successive values of n, effectively adding one binary digit
to the solution in each iteration. No reference to this algorithm
has been found so far in literature.

Berlekamp showed that polynomials can be efficiently fac-
tored when arithmetic is done modulo a prime. The Berlekamp
algorithm is only efficient for small primes, but after that Hensel
lifting can be used to determine the factors modulo larger num-
bers.

The algorithm presented here is similar in approach to apply-
ing the Berlekamp algorithm to factor modulo a small prime,
and then factoring modulo powers of this prime (using the so-
lutions found modulo the small prime by the Berlekamp algo-
rithm) by applying Hensel lifting. However it is simpler in set
up. It factors modulo 2, by trying all possible factors modulo
2 (two possibilities, if the polynomial is monic). This performs
the same action usually left to the Berlekamp step. After that,
given a solution modulo 2n, it will test for a solution fi modulo
2n if fi or fi + 2n are a solution modulo 2n+1.

This scheme raises the precision of the solution with one digit
in binary representation. This is similar to the linear Hensel lift-
ing algorithm, which factors modulo pn for some prime p, where
n increases by one after each iteration. There is also a quadratic
version of Hensel lifting which factors modulo p2n

, in effect dou-
bling the number of digits (in p-adic expansion) of the solution
after each iteration. However, according to “Davenport”, the
quadratic algorithm is not necessarily faster.

The algorithm here thus should be equivalent in complexity
to Hensel lifting linear version. This has not been verified yet.

3.1 Modular arithmetic

This section copies some definitions and rules from The Art
of Computer Programming, Volume 1, Fundamental Algorithms
regarding arithmetic modulo an integer.

Arithmetic modulo an integer p requires performing the arith-
metic operation and afterwards determining that integer modulo

p. A number x can be written as

x = qp + r

where q is called the quotient, and r remainder. There is some
liberty in the range one chooses r to be in. If r is an integer in
the range 0,1, ... ,(p-1) then it is the modulo, r = x mod p.

When x mod p = y mod p, the notation (x = y) mod p is
used. All arithmetic calculations are done modulo an integer
p in that case.

For calculations modulo some p the following rules hold:

• If (a = b) mod p and (x = y) mod p, then (ax = by) mod
p, (a + x = b + y) mod p, and (a− x = b− y) mod p. This
means that for instance also xn mod p = (x mod p)n mod p

• Two numbers x and y are relatively prime if they don’t
share a common factor, that is, if their greatest common
denominator is one, Gcd (x, y) = 1.

• If (ax = by) mod p and if (a = b) mod p, and if a and p
are relatively prime, then (x = y) mod p. This is useful for
dividing out common factors.

• (a = b) mod p if and only if (an = bn) mod (np) when n 6=
0. Also, if r and s are relatively prime, then (a = b) mod
(rs) only if (a = b) mod r and (a = b) mod s. These rules
are useful when the modulus is changed.

For polynomials v1 (x) and v2 (x) it further holds that

((v1 (x) + v2 (x))p = v1 (x)p + v2 (x)p) mod p

This follows by writing out the expression, noting that the bi-
nomial coefficients that result are multiples of p, and thus their
value modulo p is zero (p divides these coefficients), so only the
two terms on the right hand side remain.

Some corollaries

One corollary of the rules for calculations modulo an integer is
Fermat’s theorem, 1640 : if p is a prime number then

(ap = a) mod p

for all integers a (for a proof, see Knuth).
An interesting corollary to this is that, for some prime integer

p:
(v (x)p = v (xp)) mod p.

This follows from writing it out and using Fermat’s theorem
to replace ap with a where appropriate (the coefficients to the
polynomial when written out, on the left hand side).

15

3.2 Factoring using modular arith-
metic

The task is to factor a polynomial

p (x) = anxn + ... + a0

into a form

p (x) = Cg (x) f1 (x)p1 f2 (x)p2 ...fm (x)pm

Where fi (x) are irreducible polynomials of the form:

fi (x) = x + ci

The part that could not be factorized is returned as g (x),
with a possible constant factor C.

The factors fi (x) and g (x) are determined uniquely by re-
quiring them to be monic. The constant C accounts for a com-
mon factor.

The ci constants in the resulting solutions fi (x) can be ra-
tional numbers (or even complex numbers, if Gaussian integers
are used).

3.3 Preparing the polynomial for
factorization

The final factoring algorithm needs the input polynomial to be
monic with integer coefficients (a polynomial is monic if its lead-
ing coefficient is one). Given a non-monic polynomial with ra-
tional coefficients, the following steps are performed:

Convert polynomial with rational coeffi-
cients to polynomial with integer coeffi-
cients

First the least common multiple lcm of the denominators of
the coefficients p (x) has to be found, and the polynomial is
multiplied by this number. Afterwards, the C constant in the
result should have a factor 1

lcm
.

The polynomial now only has integer coefficients.

Convert polynomial to a monic polynomial

The next step is to convert the polynomial to one where the
leading coefficient is one. In order to do so, following “Daven-
port”, the following steps have to be taken:

1. Multiply the polynomial by an−1
n

2. Perform the substitution x = y
an

The polynomial is now a monic polynomial in y.

After factoring, the irreducible factors of p (x) can be obtained
by multiplying C with 1

an−1
n

, and replacing y with anx. The

irreducible solutions anx + ci can be replaced by x + ci
ai

after
multiplying C by an, converting the factors to monic factors.

After the steps described here the polynomial is now monic
with integer coefficients, and the factorization of this polynomial
can be used to determine the factors of the original polynomial
p (x).

3.4 Definition of division of poly-
nomials

To factor a polynomial a division operation for polynomials
modulo some integer is needed. This algorithm needs to return
a quotient q (x) and remainder r (x) such that:

(p (x) = q (r) d (x) + r (x)) mod p

for some polymomial d (x) to be divided by, modulo some
integer p. d (x) is said to divide p (x) (modulo p) if r (x) is zero.
It is then a factor modulo p.

For binary factoring algorithm it is important that if some
monic d (x) divides p (x), then it also divides p (x) modulo some
integer p.

Define deg (f (x)) to be the degree of f (x) and lc (f (x)) to be
the leading coefficient of f (x). Then, if deg (p (x)) ≥ deg (d (x)),
one can compute an integer s such that

(lc (d (x)) s = lc (p (x))) mod p

If p is prime, then

s =
(
lc (p (x)) lc (d (x))p−2

)
mod p

Because
(
ap−1 = 1

)
mod p for any a. If p is not prime but

d (x) is monic (and thus lc (d (x)) = 1),

s = lc (p (x))

This identity can also be used when dividing in general (not
modulo some integer), since the divisor is monic.

The quotient can then be updated by adding a term:
term = sxdeg(p(x))−deg(d(x))

and updating the polynomial to be divided, p (x), by sub-
tracting d (x) term. The resulting polynomial to be divided now
has a degree one smaller than the previous.

When the degree of p (x) is less than the degree of d (x) it is
returned as the remainder.

A full division algorithm for arbitrary integer p > 1 with
lc (d (x)) = 1 would thus look like:

divide(p(x),d(x),p)

q(x) = 0

r(x) = p(x)

while (deg(r(x)) >= deg(d(x)))

s = lc(r(x))

term = s*x^(deg(r(x))-deg(d(x)))

q(x) = q(x) + term

r(x) = r(x) - term*d(x) mod p

return {q(x),r(x)}

The reason we can get away with factoring modulo 2n as
opposed to factoring modulo some prime p in later sections is
that the divisor d (x) is monic. Its leading coefficient is one and
thus q (x) and r (x) can be uniquely determined. If p is not
prime and lc (d (x)) is not equal to one, there might be multiple
combinations for which p (x) = q (x) d (x) + r (x), and we are
interested in the combinations where r (x) is zero. This can be
costly to determine unless q(x),r(x) is unique. This is the case
here because we are factoring a monic polynomial, and are thus
only interested in cases where lc (d (x)) = 1.

3.5 Determining possible factors
modulo 2

We start with a polynomial p (x) which is monic and has integer
coefficients.

16

It will be factored into a form:

p (x) = g (x) f1 (x)p1 f2 (x)p2 ...fm (x)pm

where all factors fi (x) are monic also.
The algorithm starts by setting up a test polynomial, ptest (x)

which divides p (x), but has the property that

ptest (x) = g (x) f1 (x) f2 (x) ...fm (x)

Such a polynomial is said to be square-free. It has the same
factors as the original polynomial, but the original might have
multiple of each factor, where ptest (x) does not.

The square-free part of a polynomial can be obtained as fol-
lows:

ptest (x) =
p (x)

Gcd
(
p (x) , d

dx
p (x)

)
It can be seen by simply writing this out that p (x) and d

dx
p (x)

will have factors fi (x)pi−1 in common. these can thus be di-
vided out.

It is not a requirement of the algorithm that the algorithm
being worked with is square-free, but it speeds up computations
to work with the square-free part of the polynomial if the only
thing sought after is the set of factors. The multiplicity of the
factors can be determined using the original p (x).

Binary factoring then proceeds by trying to find potential so-
lutions modulo p = 2 first. There can only be two such solutions:
x + 0 and x + 1.

A list of possible solutions L is set up with potential solutions.

3.6 Determining factors modulo 2n

given a factorization modulo 2

At this point there is a list L with solutions modulo 2n for some
n. The solutions will be of the form: x + a. The first step is to
determine if any of the elements in L divides p (x) (not modulo
any integer). Since x+a divides ptest (x) modulo 2n, both x+a
and x + a− 2n have to be checked.

If an element in L divides ptest (x), ptest (x) is divided by
it, and a loop is entered to test how often it divides p (x) to
determine the multiplicity pi of the factor. The found factor
fi (x) = x + ci is added as a combination (x + ci, pi). p (x) is
divided by fi (x)pi .

At this point there is a list L of factors that divide ptest (x)
modulo 2n. This implies that for each of the elements u in L,
either u or u + 2n should divide ptest (x) modulo 2n+1. The
following step is thus to set up a new list with new elements
that divide ptest (x) modulo 2n+1.

The loop is re-entered, this time doing the calculation modulo
2n+1 instead of modulo 2n.

The loop is terminated if the number of factors found equals
deg (ptest (x)), or if 2n is larger than the smallest non-zero co-
efficient of ptest (x) as this smallest non-zero coefficient is the
product of all the smallest non-zero coefficients of the factors,
or if the list of potential factors is zero.

The polynomial p (x) can not be factored any further, and is
added as a factor (p (x), 1).

The function BinaryFactors, when implemented, yields the
following interaction in Yacas:

In> BinaryFactors((x+1)^4*(x-3)^2)

Out> {{x-3,2},{x+1,4}}

In> BinaryFactors((x-1/5)*(2*x+1/3))

Out> {{2,1},{x-1/5,1},{x+1/6,1}}

In> BinaryFactors((x-1123125)*(2*x+123233))

Out> {{2,1},{x-1123125,1},{x+123233/2,1}}

The binary factoring algorithm starts with a factorization
modulo 2, and then each time tries to guess the next bit of
the solution, maintaining a list of potential solutions. This list
can grow exponentially in certain instances. For instance, fac-
toring (x− a) (x− 2a) (x− 3a) ... implies a that the roots have
common factors. There are inputs where the number of poten-
tial solutions (almost) doubles with each iteration. For these
inputs the algorithm becomes exponential. The worst-case per-
formance is therefore exponential. The list of potential solutions
while iterating will contain a lot of false roots in that case.

3.7 Efficiently deciding if a polyno-
mial divides another

Given the polynomial p (x), and a potential divisor

fi (x) = x− p

modulo some q = 2n an expression for the remainder after divi-
sion is

rem (p) =

n∑
i=0

aip
i

For the initial solutions modulo 2, where the possible solu-
tions are x and x − 1. For p = 0, rem (0) = a0. For p = 1,
rem (1) =

∑n

i=0
ai .

Given a solution x−p modulo q = 2n, we consider the possible
solutions (x− p) mod 2n+1 and (x− (p + 2n)) mod (2n + 1).

x− p is a possible solution if rem (p) mod 2n+1 = 0.
x− (p + q) is a possible solution if rem (p + q) mod 2n+1 = 0.

Expanding rem (p + q) mod (2q) yields:

rem (p + q) mod (2q) = (rem (p) + extra (p, q)) mod (2q)

When expanding this expression, some terms grouped under
extra (p, q) have factors like 2q or q2. Since q = 2n, these terms
vanish if the calculation is done modulo 2n+1.

The expression for extra (p, q) then becomes

extra (p, q) = q

n
2∑

i=1

(2i− 1) a (2i) p2i−2

An efficient approach to determining if x − p or x − (p + q)
divides p (x) modulo 2n+1 is then to first calculate rem (p) mod
(2q). If this is zero, x − p divides p (x). In addition, if
(rem (p) + extra (p, q)) mod (2q) is zero, x−(p + q) is a potential
candidate.

Other efficiencies are derived from the fact that the operations
are done in binary. Eg. if q = 2n, then qnext = 2n+1 = 2q =
q << 1 is used in the next iteration. Also, calculations mod-
ulo 2n are equivalent to performing a bitwise and with 2n − 1.
These operations can in general be performed efficiently on to-
days hardware which is based on binary representations.

3.8 Extending the algorithm

Only univariate polynomials with rational coefficients have been
considered so far. This could be extended to allow for roots that
are complex numbers a + ıb where both a and b are rational
numbers.

17

For this to work the division algorithm would have to be ex-
tended to handle complex numbers with integer a and b modulo
some integer, and the initial setup of the potential solutions
would have to be extended to try x + 1 + ı and x + ı also. The
step where new potential solutions modulo 2n+1 are determined
should then also test for x + ı · 2n and x + 2n + ı · 2n.

The same extension could be made for multivariate polynomi-
als, although setting up the initial irreducible polynomials that
divide ptest (x) modulo 2 might become expensive if done on a
polynomial with many variables (22m−1 trials for m variables).

Lastly, polynomials with real-valued coefficients could be fac-
tored, if the coefficients were first converted to rational numbers.
However, for real-valued coefficients there exist other methods
(Sturm sequences).

3.9 Newton iteration

What the BinaryFactor algorithm effectively does is finding a
set of potential solutions modulo 2n+1 when given a set of po-
tential solutions modulo 2n. There is a better algorithm that
does something similar: Hensel lifting. Hensel lifting is a gen-
eralized form of Newton iteration, where given a factorization
modulo p, each iteration returns a factorization modulo p2.

Newton iteration is based on the following idea: when one
takes a Taylor series expansion of a function:

f (x0 + dx) ≡ f (x0) +
(

d

dx
f (x0)

)
dx + ...

Newton iteration then proceeds by taking only the first two
terms in this series, the constant plus the constant times dx.
Given some good initial value x0, the function will is assumed
to be close to a root, and the function is assumed to be almost
linear, hence this approximation. Under these assumptions, if
we want f (x0 + dx) to be zero,

f (x0 + dx) = f (x0) +
(

d

dx
f (x0)

)
dx = 0

This yields:

dx ≡ − f (x0)
d

dx
f (x0)

= 0

And thus a next, better, approximation for the root is x1 ≡
x0 − f(x0)

d
dx

f(x0)
, or more general:

xn+1 = xn −
f (xn)

∂
∂x

f (xn)

If the root has multiplicity one, a Newton iteration can con-
verge quadratically, meaning the number of decimals precision
for each iteration doubles.

As an example, we can try to find a root of sin x near 3, which
should converge to π.

Setting precision to 30 digits,

In> Builtin’Precision’Set(30)

Out> True;

We first set up a function dx (x):

In> dx(x):=Eval(-Sin(x)/(D(x)Sin(x)))

Out> True;

And we start with a good initial approximation to π, namely
3. Note we should set x after we set dx(x), as the right hand side
of the function definition is evaluated. We could also have used
a different parameter name for the definition of the function
dx (x).

In> x:=3

Out> 3;

We can now start the iteration:

In> x:=N(x+dx(x))

Out> 3.142546543074277805295635410534;

In> x:=N(x+dx(x))

Out> 3.14159265330047681544988577172;

In> x:=N(x+dx(x))

Out> 3.141592653589793238462643383287;

In> x:=N(x+dx(x))

Out> 3.14159265358979323846264338328;

In> x:=N(x+dx(x))

Out> 3.14159265358979323846264338328;

As shown, in this example the iteration converges quite
quickly.

Finding roots of multiple equations in mul-
tiple variables using Newton iteration

One generalization, mentioned in W.H. Press et al., NUMERI-
CAL RECIPES in C, The Art of Scientific computing is finding
roots for multiple functions in multiple variables.

Given N functions in N variables, we want to solve

fi (x1, ..., xN) = 0

for i = 1..N . If de denote by X the vector

X := x[1],x[2],...,x[N]

and by dX the delta vector, then one can write

fi (X + dX) ≡ fi (X) +

N∑
j=1

(
∂

∂xj
fi (X)

)
dxj

Setting fi (X + dX) to zero, one obtains

N∑
j=1

a(i,j)dxj = bi

where

a(i,j) ≡
∂

∂xj
fi (X)

and

bi ≡ −fi (X)

So the generalization is to first initialize X to a good initial
value, calculate the matrix elements a(i,j) and the vector bi, and
then to proceed to calculate dX by solving the matrix equation,
and calculating

Xi+1 ≡ Xi + dXi

In the case of one function with one variable, the summation
reduces to one term, so this linear set of equations was a lot
simpler in that case. In this case we will have to solve this set
of linear equations in each iteration.

As an example, suppose we want to find the zeroes for the
following two functions:

f1 (a, x) ≡ sin ax

and

f2 (a, x) ≡ a− 2

18

It is clear that the solution to this is a = 2 and x ≡ N π
2

for
any integer value N .

We will do calculations with precision 30:

In> Builtin’Precision’Set(30)

Out> True;

And set up a vector of functions f 1(X),f 2(X) where X :=
a,x

In> f(a,x):={Sin(a*x),a-2}

Out> True;

Now we set up a function matrix(a,x) which returns the
matrix a(i,j):

In> matrix(a,x):=Eval({D(a)f(a,x),D(x)f(a,x)})

Out> True;

We now set up some initial values:

In> {a,x}:={1.5,1.5}

Out> {1.5,1.5};

The iteration converges a lot slower for this example, so we
will loop 100 times:

In> For(ii:=1,ii<100,ii++)[{a,x}:={a,x}+\

N(SolveMatrix(matrix(a,x),-f(a,x)));]

Out> True;

In> {a,x}

Out> {2.,0.059667311457823162437151576236};

The value for a has already been found. Iterating a few more
times:

In> For(ii:=1,ii<100,ii++)[{a,x}:={a,x}+\

N(SolveMatrix(matrix(a,x),-f(a,x)));]

Out> True;

In> {a,x}

Out> {2.,-0.042792753588155918852832259721};

In> For(ii:=1,ii<100,ii++)[{a,x}:={a,x}+\

N(SolveMatrix(matrix(a,x),-f(a,x)));]

Out> True;

In> {a,x}

Out> {2.,0.035119151349413516969586788023};

the value for x converges a lot slower this time, and to the
uninteresting value of zero (a rather trivial zero of this set of
functions). In fact for all integer values N the value N π

2
is a

solution. Trying various initial values will find them.

Newton iteration on polynomials

von zur Gathen et al., Modern Computer algebra discusses tak-
ing the inverse of a polynomial using Newton iteration. The
task is, given a polynomial f (x), to find a polynomial g (x)
such that f (x) = 1

g(x)
, modulo some power in x. This implies

that we want to find a polynom g for which:

h (g) =
1

g
− f = 0

Applying a Newton iteration step gi+1 = gi − h(gi)
∂

∂g
h(gi)

to this

expression yields:

gi+1 = 2gi − fg2
i

von zur Gathen then proves by induction that for f (x) monic,
and thus f (0) = 1, given initial value g0 (x) = 1, that

(fgi = 1) mod x2i

Example:

suppose we want to find the polynomial g (x) up to the 7th
degree for which (f (x) g (x) = 1) mod x8, for the function

f (x) ≡ 1 + x +
x2

2
+

x3

6
+

x4

24

First we define the function f:

In> f:=1+x+x^2/2+x^3/6+x^4/24

Out> x+x^2/2+x^3/6+x^4/24+1;

And initialize g and i.

In> g:=1

Out> 1;

In> i:=0

Out> 0;

Now we iterate, increasing i, and replacing g with the new
value for g:

In> [i++;g:=BigOh(2*g-f*g^2,x,2^i);]

Out> 1-x;

In> [i++;g:=BigOh(2*g-f*g^2,x,2^i);]

Out> x^2/2-x^3/6-x+1;

In> [i++;g:=BigOh(2*g-f*g^2,x,2^i);]

Out> x^7/72-x^6/72+x^4/24-x^3/6+x^2/2-x+1;

The resulting expression must thus be:

g (x) ≡ x7

72
− x6

72
+

x4

24
− x3

6
+

x2

2
− x + 1

We can easily verify this:

In> Expand(f*g)

Out> x^11/1728+x^10/576+x^9/216+(5*x^8)/576+1;

This expression is 1 modulo x8, as can easily be shown:

In> BigOh(%,x,8)

Out> 1;

19

Chapter 4

Numerical algorithms I: basic methods

This and subsequent chapters document the numerical al-
gorithms used in Yacas for exact integer calculations as well
as for multiple precision floating-point calculations. We give
self-contained descriptions of the non-trivial algorithms and es-
timate their computational cost. Most of the algorithms were
taken from referenced literature; the remaining algorithms were
developed by us.

4.1 Adaptive function plotting

Here we consider plotting of functions y = f (x).

There are two tasks related to preparation of plots of func-
tions: first, to produce the numbers required for a plot, and
second, to draw a plot with axes, symbols, a legend, perhaps
additional illustrations and so on. Here we only concern our-
selves with the first task, that of preparation of the numerical
data for a plot. There are many plotting programs that can
read a file with numbers and plot it in any desired manner.

Generating data for plots of functions generally does not re-
quire high-precision calculations. However, we need an algo-
rithm that can be adjusted to produce data to different levels
of precision. In some particularly ill-behaved cases, a precise
plot will not be possible and we would not want to waste time
producing data that is too accurate for what it is worth.

A simple approach to plotting would be to divide the interval
into many equal subintervals and to evaluate the function on the
resulting grid. Precision of the plot can be adjusted by choosing
a larger or a smaller number of points.

However, this approach is not optimal. Sometimes a function
changes rapidly near one point but slowly everywhere else. For
example, f (x) = 1

x
changes very quickly at small x. Suppose

we need to plot this function between 0 and 100. It would be
wasteful to use the same subdivision interval everywhere: a finer
grid is only required over a small portion of the plotting range
near x = 0.

The adaptive plotting routine Plot2D’adaptive uses a simple
algorithm to select the optimal grid to approximate a function
of one argument f (x). The algorithm repeatedly subdivides the
grid intervals near points where the existing grid does not repre-
sent the function well enough. A similar algorithm for adaptive
grid refinement could be used for numerical integration. The
idea is that plotting and numerical integration require the same
kind of detailed knowledge about the behavior of the function.

The algorithm first splits the interval into a specified initial
number of equal subintervals, and then repeatedly splits each
subinterval in half until the function is well enough approxi-
mated by the resulting grid. The integer parameter depth gives
the maximum number of binary splittings for a given initial
interval; thus, at most 2depth additional grid points will be gen-
erated. The function Plot2D’adaptive should return a list of

pairs of points {{x1,y1}, {x2,y2}, ...} to be used directly
for plotting.

The adaptive plotting algorithm works like this:

• 1. Given an interval (a, c), we split it in half, b ≡ a+c
2

and first compute f (x) at five grid points a, a1 ≡ a+b
2

, b,
b1 ≡ b+c

2
, c.

• 2. If currently depth ≤ 0, return this list of five points and
values because we cannot refine the grid any more.

• 3. Otherwise, check that the function does not oscillate
too rapidly on the interval [a, c]. The formal criterion
is that the five values are all finite and do not make a
“zigzag” pattern such as (1,3,2,3,1). More formally, we use
the following procedure: For each three consecutive values,
write “1” if the middle value is larger than the other two, or
if it is smaller than the other two, or if one of them is not a
number (e.g. Infinity or Undefined). If we have at most
two ones now, then we consider the change of values to be
“slow enough”. Otherwise it is not “slow enough”. In this
case we need to refine the grid; go to step 5. Otherwise, go
to step 4.

• 4. Check that the function values are smooth enough
through the interval. Smoothness is controlled by a pa-
rameter ε. The meaning of the parameter ε is the (relative)
error of the numerical approximation of the integral of f (x)
by the grid. A good heuristic value of ε is 1/(the number
of pixels on the screen) because it means that no pixels will
be missing in the area under the graph. For this to work
we need to make sure that we are actually computing the
area under the graph; so we define g (x) ≡ f (x)−f0 where
f0 is the minimum of the values of f (x) on the five grid
points a, a1, b, b1, and c; the function g (x) is nonnega-
tive and has the minimum value 0. Then we compute two

different Newton-Cotes quadratures for
∫ b1

b
g (x) dx using

these five points. (Asymmetric quadratures are chosen to
avoid running into an accidental symmetry of the function;
the first quadrature uses points a, a1, b, b1 and the second
quadrature uses b, b1, c.) If the absolute value of the dif-
ference between these quadratures is less than ε * (value of
the second quadrature), then we are done and we return
the list of these five points and values.

• 5. Otherwise, we need to refine the grid. We compute
Plot2D’adaptive recursively for the two halves of the in-
terval, that is, for (a, b) and (b, c). We also decrease depth

by 1 and multiply ε by 2 because we need to maintain a
constant absolute precision and this means that the relative
error for the two subintervals can be twice as large. The
resulting two lists for the two subintervals are concatenated
(excluding the double value at point b) and returned.

20

This algorithm works well if the initial number of points and
the depth parameter are large enough. These parameters can
be adjusted to balance the available computing time and the
desired level of detail in the resulting plot.

Singularities in the function are handled by the step 3.
Namely, the change in the sequence a, a1, b, b1, c is always con-
sidered to be “too rapid” if one of these values is a non-number
(e.g. Infinity or Undefined). Thus, the interval immediately
adjacent to a singularity will be plotted at the highest allowed
refinement level. When preparing the plotting data, the singular
points are simply not printed to the data file, so that a plotting
programs does not encounter any problems.

Newton-Cotes quadratures

The meaning of Newton-Cotes quadrature coefficients is that an
integral of a function f (x) is approximated by a sum,∫ an

a0

f (x) dx ≈ h

n∑
k=0

ckf (ak) ,

where ak are the grid points, h ≡ a1 − a0 is the grid step,
and ck are the quadrature coefficients. It may seem surprising,
but these coefficients ck are independent of the function f (x)
and can be precomputed in advance for a given grid ak. [The
quadrature coefficients do depend on the relative separations of
the grid. Here we assume a uniform grid with a constant step
h = ak − ak−1. Quadrature coefficients can also be found for
non-uniform grids.]

The coefficients ck for grids with a constant step h can be
found, for example, by solving the following system of equations,

n∑
k=0

ckkp =
np+1

p + 1

for p = 0, 1, ..., n. This system of equations means that
the quadrature correctly gives the integrals of p + 1 functions
f (x) = xp, p = 0, 1, ..., n, over the interval (0, n). The solution
of this system always exists and gives quadrature coefficients
as rational numbers. For example, the well-known Simpson
quadrature c0 = 1

3
, c1 = 4

3
, c2 = 1

3
is obtained with n = 2.

An example of using this quadrature is the approximation∫ 2

0

f (x) dx ≈ f (0) + f (2)

3
+

4

3
f (1) .

In the same way it is possible to find quadratures for the
integral over a subinterval rather than over the whole interval
of x. In the current implementation of the adaptive plotting
algorithm, two quadratures are used: the 3-point quadrature
(n = 2) and the 4-point quadrature (n = 3) for the integral over
the first subinterval,

∫ a1

a0
f (x) dx. Their coefficients are (5

12
, 2

3
,

− 1
12

) and (3
8
, 19

24
, − 5

24
, 1

24
). An example of using the first of

these subinterval quadratures would be the approximation∫ 1

0

f (x) dx ≈ 5

12
f (0) +

2

3
f (1)− 1

12
f (2) .

These quadratures are intentionally chosen to be asymmetric to
avoid an accidental cancellation when the function f (x) itself
is symmetric. (Otherwise the error estimate could accidentally
become exactly zero.)

4.2 Surface plotting

Here we consider plotting of functions z = f (x, y).

The task of surface plotting is to obtain a picture of a two-
dimensional surface as if it were a solid object in three dimen-
sions. A graphical representation of a surface is a complicated
task. Sometimes it is required to use particular coordinates or
projections, to colorize the surface, to remove hidden lines and
so on. We shall only be concerned with the task of obtaining the
data for a plot from a given function of two variables f (x, y).
Specialized programs can take a text file with the data and let
the user interactively produce a variety of surface plots.

The currently implemented algorithm in the function Plot3DS

is very similar to the adaptive plotting algorithm for two-
dimensional plots. A given rectangular plotting region a1 ≤
x ≤ a2, b1 ≤ y ≤ b2 is subdivided to produce an equally spaced
rectangular grid of points. This is the initial grid which will be
adaptively refined where necessary. The refinement algorithm
will divide a given rectangle in four quarters if the available func-
tion values indicate that the function does not change smoothly
enough on that rectangle.

The criterion of a “smooth enough” change is very similar to
the procedure outlined in the previous section. The change is
“smooth enough” if all points are finite, nonsingular values, and
if the integral of the function over the rectangle is sufficiently
well approximated by a certain low-order “cubature” formula.

The two-dimensional integral of the function is estimated us-
ing the following 5-point Newton-Cotes cubature:

1/12 0 1/12

0 2/3 0

1/12 0 1/12

An example of using this cubature would be the approxima-
tion∫ 1

0

∫ 1

0

f (x, y) dxdy ≈ f (0, 0) + f (0, 1) + f (1, 0) + f (1, 1)

12

+
2

3
f
(

1

2
,
1

2

)
.

Similarly, an 8-point cubature with zero sum is used to esti-
mate the error:

-1/3 2/3 1/6

-1/6 -2/3 -1/2

1/2 0 1/3

This set of coefficients was intentionally chosen to be asymmet-
ric to avoid possible exact cancellations when the function itself
is symmetric.

One minor problem with adaptive surface plotting is that
the resulting set of points may not correspond to a rectangular
grid in the parameter space (x,y). This is because some rect-
angles from the initial grid will need to be bisected more times
than others. So, unless adaptive refinement is disabled, the
function Plot3DS produces a somewhat disordered set of points.
However, most surface plotting programs require that the set of
data points be a rectangular grid in the parameter space. So a
smoothing and interpolation procedure is necessary to convert
a non-gridded set of data points (“scattered” data) to a gridded
set.

21

4.3 Parametric plots

Currently, parametric plots are not directly implemented in Ya-
cas. However, it is possible to use Yacas to obtain numerical
data for such plots. One can then use external programs to
produce actual graphics.

A two-dimensional parametric plot is a line in a two-
dimensional space, defined by two equations such as x = f (t),
y = g (t). Two functions f , g and a range of the independent
variable t, for example, t1 ≤ t ≤ t2, need to be specified.

Parametric plots can be used to represent plots of functions
in non-Euclidean coordinates. For example, to plot the function
ρ = (cos 4φ)2 in polar coordinates (ρ,φ), one can rewrite the Eu-
clidean coordinates through the polar coordinates, x = ρ cos φ,
y = ρ sin φ, and use the equivalent parametric plot with φ as
the parameter: x = (cos 4φ)2 cos φ, y = (cos 4φ)2 sin φ.

Sometimes higher-dimensional parametric plots are required.
A line plot in three dimensions is defined by three functions of
one variable, for example, x = f (t), y = g (t), z = h (t), and
a range of the parameter t. A surface plot in three dimensions
is defined by three functions of two variables each, for example,
x = f (u, v), y = g (u, v), z = h (u, v), and a rectangular domain
in the (u,v) space.

The data for parametric plots can be generated separately us-
ing the same adaptive plotting algorithms as for ordinary func-
tion plots, as if all functions such as f (t) or g (u, v) were unre-
lated functions. The result would be several separate data sets
for the x, y, ... coordinates. These data sets could then be
combined using an interactive plotting program.

4.4 The cost of arbitrary-precision
computations

A computer algebra system absolutely needs to be able to per-
form computations with very large integer numbers. With-
out this capability, many symbolic computations (such as exact
GCD of polynomials or exact solution of polynomial equations)
would be impossible.

A different question is whether a CAS really needs to be able
to evaluate, say, 10,000 digits of the value of a Bessel function
of some 10,000-digit complex argument. It seems likely that no
applied problem of natural sciences would need floating-point
computations of special functions with such a high precision.
However, arbitrary-precision computations are certainly useful
in some mathematical applications; e.g. some mathematical
identities can be first guessed by a floating-point computation
with many digits and then proved.

Very high precision computations of special functions might
be useful in the future. But it is already quite clear that compu-
tations with moderately high precision (say, 50 or 100 decimal
digits) are useful for applied problems. For example, to obtain
the leading asymptotic of an analytic function, we could expand
it in series and take the first term. But we need to check that the
coefficient at what we think is the leading term of the series does
not vanish. This coefficient could be a certain “exact” number
such as (cos 355 + 1)2. This number is “exact” in the sense that
it is made of integers and elementary functions. But we cannot
say a priori that this number is nonzero. The problem of “zero
determination” (finding out whether a certain “exact” number
is zero) is known to be algorithmically unsolvable if we allow
transcendental functions. The only practical general approach
seems to be to compute the number in question with many dig-
its. Usually a few digits are enough, but occasionally several
hundred digits are needed.

Implementing an efficient algorithm that computes 100 digits
of sin 3

7
already involves many of the issues that would also be

relevant for a 10,000 digit computation. Modern algorithms
allow evaluations of all elementary functions in time that is
asymptotically logarithmic in the number of digits P and lin-
ear in the cost of long multiplication (usually denoted M (P)).
Almost all special functions can be evaluated in time that is
asymptotically linear in P and in M (P). (However, this asymp-
totic cost sometimes applies only to very high precision, e.g.,
P > 1000, and different algorithms need to be implemented for
calculations in lower precision.)

In Yacas we strive to implement all numerical functions
to arbitrary precision. All integer or rational functions re-
turn exact results, and all floating-point functions return their
value with P correct decimal digits (assuming sufficient pre-
cision of the arguments). The current value of P is ac-
cessed as Builtin’Precision’Get() and may be changed by
Builtin’Precision’Set(...).

Implementing an arbitrary-precision floating-point computa-
tion of a function f (x), such as f (x) = exp (x), typically needs
the following:

• An algorithm that will compute f (x) for a given value x
to a user-specified precision of P (decimal) digits. Often,
several algorithms must be implemented for different sub-
domains of the (x,P) space.

• An estimate of the computational cost of the algorithm(s),
as a function of x and P . This is needed to select the best
algorithm for given x, P .

• An estimate of the round-off error. This is needed to select
the “working precision” which will typically be somewhat
higher than the precision of the final result.

In calculations with machine precision where the number of
digits is fixed, the problem of round-off errors is quite prominent.
Every arithmetic operation causes a small loss of precision; as
a result, a few last digits of the final value are usually incor-
rect. But if we have an arbitrary precision capability, we can
always increase precision by a few more digits during interme-
diate computations and thus eliminate all round-off error in the
final result. We should, of course, take care not to increase the
working precision unnecessarily, because any increase of preci-
sion means slower calculations. Taking twice as many digits
as needed and hoping that the result is precise is not a good
solution.

Selecting algorithms for computations is the most non-trivial
part of the implementation. We want to achieve arbitrarily high
precision, so we need to find either a series, or a continued frac-
tion, or a sequence given by explicit formula, that converges to
the function in a controlled way. It is not enough to use a table
of precomputed values or a fixed approximation formula that
has a limited precision.

In the last 30 years, the interest in arbitrary-precision compu-
tations grew and many efficient algorithms for elementary and
special functions were published. Most algorithms are itera-
tive. Almost always it is very important to know in advance
how many iterations are needed for given x, P . This knowledge
allows to estimate the computational cost, in terms of the re-
quired precision P and of the cost of long multiplication M (P),
and choose the best algorithm.

Typically all operations will fall into one of the following cat-
egories (sorted by the increasing cost):

• addition, subtraction: linear in P ;

• multiplication, division, integer power, integer root: linear
in M (P);

22

• elementary functions: exp (x), ln x, sin x, arctan x etc.:
M (P) ln P or slower by some powers of ln P ;

• transcendental functions: erf x, Γ (x) etc.: typically
PM (P) or slower.

The cost of long multiplication M (P) is between O
(
P 2
)

for
low precision and O (P ln P) for very high precision. In some
cases, a different algorithm should be chosen if the precision is
high enough to allow M (P) faster than O

(
P 2
)
.

Some algorithms also need storage space (e.g. an efficient
algorithm for summation of the Taylor series uses O (ln P) tem-
porary P -digit numbers).

Below we shall normally denote by P the required number
of decimal digits. The formulae frequently contain conspicuous
factors of ln 10, so it will be clear how to obtain analogous ex-
pressions for another base. (Most implementations use a binary
base rather than a decimal base since it is more convenient for
many calculations.)

4.5 Estimating convergence of a se-
ries

Analyzing convergence of a power series is usually not difficult.
Here is a worked-out example of how we could estimate the
required number of terms in the power series

exp (x) = 1 + x +
x2

2!
+ ... +

xn

n!
+ O

(
xn+1

)
if we need P decimal digits of precision in the result. To be
specific, assume that |x| < 1. (A similar calculation can be
done for any other bound on x.)

Suppose we truncate the series after n-th term and the series
converges “well enough” after that term. Then the error will
be approximately equal to the first term we dropped. (This is
what we really mean by “converges well enough” and this will
generally be the case in all applications, because we would not
want to use a series that does not converge well enough.)

The term we dropped is xn+1

(n+1)!
. To estimate n! for large n,

one can use the inequality

ee−1
(

n

e

)n

< n! <
(

n

e

)n+1

(valid for all n ≥ 47) which provides tight bounds for the growth
of the factorial, or a weaker inequality which is somewhat easier
to use, (

n

e

)n

< n! <
(

n + 1

e

)n+1

(valid for all n ≥ 6). The latter inequality is sufficient for most
purposes.

If we use the upper bound on n! from this estimate, we find
that the term we dropped is bounded by

xn+1

(n + 1)!
<
(

e

n + 2

)n+2

.

We need this number to be smaller than 10−P . This leads to an
inequality (

e

n + 2

)n+2

< 10−P ,

which we now need to solve for n. The left hand side decreases
with growing n. So it is clear that the inequality will hold for
large enough n, say for n ≥ n0 where n0 is an unknown (integer)

value. We can take a logarithm of both sides, replace n with n0

and obtain the following equation for n0:

(n0 + 2) ln
n0 + 2

e
= P ln 10.

This equation cannot be solved exactly in terms of elementary
functions; this is a typical situation in such estimates. However,
we do not really need a very precise solution for n0; all we
need is an estimate of its integer part. This is also a typical
situation. It is acceptable if our approximate value of n0 comes
out a couple of units higher than necessary, because a couple of
extra terms of the Taylor series will not significantly slow down
the algorithm (but it is important that we do not underestimate
n0). Finally, we are mostly interested in having a good enough
answer for large values of P .

We can try to guess the result. The largest term on the
LHS grows as n0 ln n0 and it should be approximately equal
to P ln 10; but ln n0 grows very slowly, so this gives us a hint
that n0 is proportional to P ln 10. As a first try, we set n0 =
P ln 10−2 and compare the RHS with the LHS; we find that we
have overshot by a factor ln P −1+ ln ln 10, which is not a large
factor. We can now compensate and divide n0 by this factor, so
our second try is

n0 =
P ln 10

ln P − 1 + ln ln 10
− 2.

(This approximation procedure is equivalent to solving the equa-
tion

x =
P ln 10

ln x− 1

by direct iteration, starting from x = P ln 10.) If we substitute
our second try for n0 into the equation, we shall find that we
undershot a little bit (i.e. the LHS is a little smaller than the
RHS), but our n0 is now smaller than it should be by a quantity
that is smaller than 1 for large enough P . So we should stop
at this point and simply add 1 to this approximate answer. We
should also replace ln ln 10 − 1 by 0 for simplicity (this is safe
because it will slightly increase n0.)

Our final result is that it is enough to take

n =
P ln 10

ln P
− 1

terms in the Taylor series to compute exp (x) for |x| < 1 to P
decimal digits. (Of course, if x is much smaller than 1, many
fewer terms will suffice.)

4.6 Estimating the round-off error

Unavoidable round-off errors

As the required precision P grows, an arbitrary-precision algo-
rithm will need more iterations or more terms of the series. So
the round-off error introduced by every floating-point operation
will increase. When doing arbitrary-precision computations, we
can always perform all calculations with a few more digits and
compensate for round-off error. It is however imperative to know
in advance how many more digits we need to take for our “work-
ing precision”. We should also take that increase into account
when estimating the total cost of the method. (In most cases
this increase is small.)

Here is a simple estimate of the normal round-off error in a
computation of n terms of a power series. Suppose that the sum
of the series is of order 1, that the terms monotonically decrease
in magnitude, and that adding one term requires two multipli-
cations and one addition. If all calculations are performed with

23

absolute precision ε = 10−P , then the total accumulated round-
off error is 3nε. If the relative error is 3nε, it means that our
answer is something like a (1 + 3nε) where a is the correct an-
swer. We can see that out of the total P digits of this answer,
only the first k decimal digits are correct, where k = − ln 3nε

ln 10
. In

other words, we have lost

P − k =
ln 3n

ln 10

digits because of accumulated round-off error. So we found that
we need ln 3n

ln 10
extra decimal digits to compensate for this round-

off error.
This estimate assumes several things about the series (ba-

sically, that the series is “well-behaved”). These assumptions
must be verified in each particular case. For example, if the se-
ries begins with some large terms but converges to a very small
value, this estimate is wrong (see the next subsection).

In the previous exercise we found the number of terms n for
exp (x). So now we know how many extra digits of working
precision we need for this particular case.

Below we shall have to perform similar estimates of the re-
quired number of terms and of the accumulated round-off error
in our analysis of the algorithms.

Catastrophic round-off error

Sometimes the round-off error of a particular method of com-
putation becomes so large that the method becomes highly in-
efficient.

Consider the computation of sin x by the truncated Taylor
series

sin x ≈
N−1∑
k=0

(−1)k x2k+1

(2k + 1)!
,

when x is large. We know that this series converges for all x,
no matter how large. Assume that x = 10M with M ≥ 1, and
that we need P decimal digits of precision in the result.

First, we determine the necessary number of terms N . The
magnitude of the sum is never larger than 1. Therefore we
need the N -th term of the series to be smaller than 10−P . The
inequality is (2N + 1)! > 10P+M(2N+1). We obtain that 2N +
2 > e · 10M is a necessary condition, and if P is large, we find
approximately

2N + 2 ≈ (P −M) ln 10

ln (P −M)− 1−M ln 10
.

However, taking enough terms does not yet guarantee a good
result. The terms of the series grow at first and then start to
decrease. The sum of these terms is, however, small. Therefore
there is some cancellation and we need to increase the working
precision to avoid the round-off. Let us estimate the required
working precision.

We need to find the magnitude of the largest term of the se-
ries. The ratio of the next term to the previous term is x

2k(2k+1)

and therefore the maximum will be when this ratio becomes
equal to 1, i.e. for 2k ≈

√
x. Therefore the largest term is of

order x
√

x
√

x!
and so we need about M

2

√
x decimal digits before the

decimal point to represent this term. But we also need to keep
at least P digits after the decimal point, or else the round-off er-
ror will erase the significant digits of the result. In addition, we
will have unavoidable round-off error due to O (P) arithmetic
operations. So we should increase precision again by P + ln P

ln 10

digits plus a few guard digits.
As an example, to compute sin 10 to P = 50 decimal digits

with this method, we need a working precision of about 60 digits,

while to compute sin 10000 we need to work with about 260
digits. This shows how inefficient the Taylor series for sin x
becomes for large arguments x. A simple transformation x =
2πn+x′ would have reduced x to at most 7, and the unnecessary
computations with 260 digits would be avoided. The main cause
of this inefficiency is that we have to add and subtract extremely
large numbers to get a relatively small result of order 1.

We find that the method of Taylor series for sin x at large
x is highly inefficient because of round-off error and should be
complemented by other methods. This situation seems to be
typical for Taylor series.

4.7 Basic arbitrary-precision arith-
metic

Yacas uses an internal math library (the yacasnumbers library)
which comes with the source code. This reduces the dependen-
cies of the Yacas system and improves portability. The internal
math library is simple and does not necessarily use the most
optimal algorithms.

If P is the number of digits of precision, then multiplication
and division take M (P) = O

(
P 2
)

operations in the internal
math. (Of course, multiplication and division by a short in-
teger takes time linear in P .) Much faster algorithms (Karat-
suba, Toom-Cook, FFT multiplication, Newton-Raphson divi-
sion etc.) are implemented in gmp, CLN and some other li-
braries. The asymptotic cost of multiplication for very large
precision is M (P) ≈ O

(
P 1.6

)
for the Karatsuba method and

M (P) = O (P ln P ln ln P) for the FFT method. In the esti-
mates of computation cost in this book we shall assume that
M (P) is at least linear in P and maybe a bit slower.

The costs of multiplication may be different in various
arbitrary-precision arithmetic libraries and on different com-
puter platforms. As a rough guide, one can assume that the
straightforward O

(
P 2
)

multiplication is good until 100-200 dec-
imal digits, the asymptotically fastest method of FFT multipli-
cation is good at the precision of about 5,000 or more decimal
digits, and the Karatsuba multiplication is best in the middle
range.

Warning: calculations with internal Yacas math using preci-
sion exceeding 10,000 digits are currently impractically slow.

In some algorithms it is necessary to compute the integer
parts of expressions such as a ln b

ln 10
or a ln 10

ln 2
, where a, b are short

integers of order O (P). Such expressions are frequently needed
to estimate the number of terms in the Taylor series or similar
parameters of the algorithms. In these cases, it is important that
the result is not underestimated. However, it would be wasteful
to compute 1000 ln 10

ln 2
in great precision only to discard most of

that information by taking the integer part of that number. It
is more efficient to approximate such constants from above by
short rational numbers, for example, ln 10

ln 2
< 28738

8651
and ln 2 <

7050
10171

. The error of such an approximation will be small enough
for practical purposes. The function BracketRational can be
used to find optimal rational approximations.

The function IntLog (see below) efficiently computes the in-
teger part of a logarithm (for an integer base, not a natural
logarithm). If more precision is desired in calculating ln a

ln b
for

integer a, b, one can compute IntLog
(
ak, b

)
for some integer k

and then divide by k.

24

4.8 How many digits of
sin exp (exp (1000)) do we need?

Arbitrary-precision math is not omnipotent against overflow.
Consider the problem of representing very large numbers such
as x = exp (exp (1000)). Suppose we need a floating-point rep-
resentation of the number x with P decimal digits of precision.
In other words, we need to express x ≈ M ·10E , where the man-
tissa 1 < M < 10 is a floating-point number and the exponent
E is an integer, chosen so that the relative precision is 10−P .
How much effort is needed to find M and E?

The exponent E is easy to obtain:

E =
⌊

ln x

ln 10

⌋
=

⌊
exp (1000)

ln 10

⌋
≈ 8.55 · 10433.

To compute the integer part byc of a number y exactly, we need
to approximate y with at least ln y

ln 10
floating-point digits. In our

example, we find that we need 434 decimal digits to represent
E.

Once we found E, we can write x = 10E+m where m =
exp(1000)

ln 10
− E is a floating-point number, 0 < m < 1. Then

M = 10m. To find M with P (decimal) digits, we need m with
also at least P digits. Therefore, we actually need to evaluate
exp(1000)

ln 10
with 434+P decimal digits before we can find P digits

of the mantissa of x. We ran into a perhaps surprising situation:
one needs a high-precision calculation even to find the first digit
of x, because it is necessary to find the exponent E exactly as
an integer, and E is a rather large integer. A normal double-
precision numerical calculation would give an overflow error at
this point.

Suppose we have found the number x = exp (exp (1000)) with
some precision. What about finding sin x? Now, this is ex-
tremely difficult, because to find even the first digit of sin x we
have to evaluate x with absolute error of at most 0.5. We know,
however, that the number x has approximately 10434 digits be-
fore the decimal point. Therefore, we would need to calculate x
with at least that many digits. Computations with 10434 digits
is clearly far beyond the capability of modern computers. It
seems unlikely that even the sign of sin exp (exp (1000)) will be
obtained in the near future. 1

Suppose that N is the largest integer that our arbitrary-
precision facility can reasonably handle. (For Yacas internal
math library, N is about 1010000.) Then it follows that numbers
x of order 10N can be calculated with at most one (1) digit of
floating-point precision, while larger numbers cannot be calcu-
lated with any precision at all.

It seems that very large numbers can be obtained in practice
only through exponentiation or powers. It is unlikely that such
numbers will arise from sums or products of reasonably-sized
numbers in some formula. 2 For example, suppose a program
operates with numbers x of size N or smaller; a number such
as 10N can be obtained only by multiplying O (N) numbers x
together. But since N is the largest representable number, it
is certainly not feasible to perform O (N) sequential operations
on a computer. However, it is feasible to obtain N -th power of
a small number, since it requires only O (ln N) operations.

If numbers larger than 10N are created only by exponenti-
ation operations, then special exponential notation could be
used to represent them. For example, a very large number z

1It seems even less likely that the sign of sin exp (exp (1000)) would
be of any use to anybody even if it could be computed.

2A factorial function can produce rapidly growing results, but ex-
act factorials n! for large n are well represented by the Stirling formula
which involves powers and exponentials.

could be stored and manipulated as an unevaluated exponen-
tial z = exp

(
M · 10E

)
where M ≥ 1 is a floating-point number

with P digits of mantissa and E is an integer, ln N < E < N .
Let us call such objects “exponentially large numbers” or “exp-
numbers” for short.

In practice, we should decide on a threshold value N and
promote a number to an exp-number when its logarithm exceeds
N .

Note that an exp-number z might be positive or negative, e.g.
z = − exp

(
M · 10E

)
.

Arithmetic operations can be applied to the exp-numbers.
However, exp-large arithmetic is of limited use because of an
almost certainly critical loss of precision. The power and
logarithm operations can be meaningfully performed on exp-
numbers z. For example, if z = exp

(
M · 10E

)
and p is a

normal floating-point number, then zp = exp
(
pM · 10E

)
and

ln z = M ·10E . We can also multiply or divide two exp-numbers.
But it makes no sense to multiply an exp-number z by a normal
number because we cannot represent the difference between z
and say 2.52z. Similarly, adding z to anything else would re-
sult in a total underflow, since we do not actually know a single
digit of the decimal representation of z. So if z1 and z2 are
exp-numbers, then z1 + z2 is simply equal to either z1 or z2

depending on which of them is larger.
We find that an exp-number z acts as an effective “infinity”

compared with normal numbers. But exp-numbers cannot be
used as a device for computing limits: the unavoidable underflow
will almost certainly produce wrong results. For example, trying
to verify

lim
x→0

exp (x)− 1

x
= 1

by substituting x = 1
z

with some exp-number z gives 0 instead
of 1.

Taking a logarithm of an exp-number brings it back to the
realm of normal, representable numbers. However, taking an
exponential of an exp-number results in a number which is not
representable even as an exp-number. This is because an exp-
number z needs to have its exponent E represented exactly as
an integer, but exp (z) has an exponent of order O (z) which
is not a representable number. The monstrous number exp (z)
could be only written as exp

(
exp
(
M · 10E

))
, i.e. as a “dou-

bly exponentially large” number, or “2-exp-number” for short.
Thus we obtain a hierarchy of iterated exp-numbers. Each layer
is “unrepresentably larger” than the previous one.

The same considerations apply to very small numbers of the
order 10−N or smaller. Such numbers can be manipulated as
“exponentially small numbers”, i.e. expressions of the form
exp
(
−M · 10E

)
with floating-point mantissa M ≥ 1 and in-

teger E satisfying ln N < E < N . Exponentially small numbers
act as an effective zero compared with normal numbers.

Taking a logarithm of an exp-small number makes it again
a normal representable number. However, taking an expo-
nential of an exp-small number produces 1 because of under-
flow. To obtain a “doubly exponentially small” number, we
need to take a reciprocal of a doubly exponentially large num-
ber, or take the exponent of an exponentially large negative
power. In other words, exp

(
−M · 10E

)
is exp-small, while

exp
(
− exp

(
M · 10E

))
is 2-exp-small.

The practical significance of exp-numbers is rather limited.
We cannot obtain even a single significant digit of an exp-
number. A “computation” with exp-numbers is essentially
a floating-point computation with logarithms of these exp-
numbers. A practical problem that needs numbers of this mag-
nitude can probably be restated in terms of more manageable
logarithms of such numbers. In practice, exp-numbers could

25

be useful not as a means to get a numerical answer, but as a
warning sign of critical overflow or underflow. 3

4.9 Continued fractions

A “continued fraction” is an expression of the form

a0 +
b0

a1 + b1

a2+
b2

a3+...

.

The coefficients ai, bi are called the “terms” of the fraction.
(Usually one has ai 6= 0, bi 6= 0.) The above continued fraction
is sometimes written as

a0 +
b0

a1 + ...

b1

a2 + ...

b2

a3 + ...
...

Usually one considers infinite continued fractions, i.e. the
sequences ai, bi are infinite. The value of an infinite continued
fraction is defined as the limit of the fraction truncated after
a very large number of terms. (A continued traction can be
truncated after n-th term if one replaces bn by 0.)

An infinite continued fraction does not always converge. Con-
vergence depends on the values of the terms.

The representation of a number via a continued fraction is
not unique because we could, for example, multiply the numer-
ator and the denominator of any simple fraction inside it by any
number. Therefore one may consider some normalized represen-
tations. A continued fraction is called “regular” if bk = 1 for all
k, all ak are integer and ak > 0 for k ≥ 1. Regular continued
fractions always converge.

Approximation of numbers by continued
fractions

The function ContFrac converts a (real) number r into a regular
continued fraction with integer terms,

r = n0 +
1

n1 + 1
n2+...

.

Here all numbers ni are integers and all except n0 are posi-
tive. This representation of a real number r is unique. We may
write this representation as r = (n0, n1, n2, ...). If r is a rational
number, the corresponding regular continued fraction is finite,
terminating at some nN . Otherwise the continued fraction will
be infinite. It is known that the truncated fractions will be in
some sense “optimal” rational representations of the real num-
ber r.

The algorithm for converting a rational number r = n
m

into
a regular continued fraction is simple. First, we determine the
integer part of r, which is Div (n, m). If it is negative, we need
to subtract one, so that r = n0 + x and the remainder x is
nonnegative and less than 1. The remainder x = n mod m

m
is

then inverted, r1 ≡ 1
x

= m
n mod m

and so we have completed the
first step in the decomposition, r = n0 + 1

r1
; now n0 is integer

but r1 is perhaps not integer. We repeat the same procedure on
r1, obtain the next integer term n1 and the remainder r2 and
so on, until such n that rn is an integer and there is no more
work to do. This process will always terminate.

If r is a real number which is known by its floating-point
representation at some precision, then we can use the same al-
gorithm because all floating-point values are actually rational
numbers.

3Yacas currently does not implement exp-numbers or any other
guards against overflow and underflow. If a decimal exponential be-
comes too large, an incorrect answer may result.

Real numbers known by their exact representations can some-
times be expressed as infinite continued fractions, for example

√
11 = (3, 3, 6, 3, 6, 3, 6, ...) ;

exp

(
1

p

)
= (1, p− 1, 1, 1, 3p− 1, 1, 1, 5p− 1, ...) .

The functions GuessRational and NearRational take a real
number x and use continued fractions to find rational approx-
imations r = p

q
≈ x with “optimal” (small) numerators and

denominators p, q.
Suppose we know that a certain number x is rational but

we have only a floating-point representation of x with a limited
precision, for example, x ≈ 1.5662650602409638. We would like
to guess a rational form for x (in this example x = 130

83
). The

function GuessRational solves this problem.
Consider the following example. The number 17

3
has a contin-

ued fraction expansion {5,1,2}. Evaluated as a floating point
number with limited precision, it may become something like
17
3

+ 0.00001, where the small number represents a round-off
error. The continued fraction expansion of this number is {5,
1, 2, 11110, 1, 5, 1, 3, 2777, 2}. The presence of an un-
naturally large term 11110 clearly signifies the place where the
floating-point error was introduced; all terms following it should
be discarded to recover the continued fraction {5,1,2} and from
it the initial number 17

3
.

If a continued fraction for a number x is cut right before an
unusually large term and evaluated, the resulting rational num-
ber has a small denominator and is very close to x. This works
because partial continued fractions provide “optimal” rational
approximations for the final (irrational) number, and because
the magnitude of the terms of the partial fraction is related
to the magnitude of the denominator of the resulting rational
approximation.

GuessRational(x, prec) needs to choose the place where it
should cut the continued fraction. The algorithm for this is
somewhat heuristic but it works well enough. The idea is to
cut the continued fraction when adding one more term would
change the result by less than the specified precision. To realize
this in practice, we need an estimate of how much a continued
fraction changes when we add one term.

The routine GuessRational uses a (somewhat weak) upper
bound for the difference of continued fractions that differ only
by an additional last term:

|δ| ≡

∣∣∣∣∣∣ 1

a1 + 1

...+ 1
an

− 1

a1 + 1

...+ 1
an+1

∣∣∣∣∣∣ <
1

(a1...an)2 an+1

.

(The derivation of this inequality is given below.) Thus we
should compute the product of successive terms ai of the con-
tinued fraction and stop at an at which this product exceeds
the maximum number of digits. The routine GuessRational

has a second parameter prec which is by default 1/2 times the
number of decimal digits of current precision; it stops at an at
which the product a1...an exceeds 10prec.

The above estimate for δ hinges on the inequality

1

a + 1
b+...

<
1

a

and is suboptimal if some terms ai = 1, because the product
of ai does not increase when one of the terms is equal to 1,
whereas in fact these terms do make δ smaller. A somewhat
better estimate would be obtained if we use the inequality

1

a + 1

b+ 1
c+...

<
1

a + 1

b+ 1
c

.

26

(See the next section for more explanations of precision of con-
tinued fraction approximations.) This does not lead to a signif-
icant improvement if a > 1 but makes a difference when a = 1.
In the product a1...an, the terms ai which are equal to 1 should
be replaced by

ai +
1

ai+1 + 1
ai+2

.

Since the comparison of a1...an with 10prec is qualitative, it it
enough to perform calculations of a1...an with limited precision.

This algorithm works well if x is computed with enough pre-
cision; namely, it must be computed to at least as many digits
as there are in the numerator and the denominator of the frac-
tion combined. Also, the parameter prec should not be too
large (or else the algorithm will find another rational number
with a larger denominator that approximates x “better” than
the precision to which you know x).

The related function NearRational(x, prec) works some-
what differently. The goal is to find an “optimal” rational
number, i.e. with smallest numerator and denominator, that
is within the distance 10−prec of a given value x. The func-
tion NearRational does not always give the same answer as
GuessRational.

The algorithm for NearRational comes from the HAKMEM
[Beeler et al. 1972], Item 101C. Their description is terse but
clear:

Problem: Given an interval, find in it the

rational number with the smallest numerator and

denominator.

Solution: Express the endpoints as continued

fractions. Find the first term where they differ

and add 1 to the lesser term, unless it’s last.

Discard the terms to the right. What’s left is

the continued fraction for the "smallest"

rational in the interval. (If one fraction

terminates but matches the other as far as it

goes, append an infinity and proceed as above.)

The HAKMEM text [Beeler et al. 1972] contains several in-
teresting insights relevant to continued fractions and other nu-
merical algorithms.

Accurate computation of continued frac-
tions

Sometimes an analytic function f (x) can be approximated us-
ing a continued fraction that contains x in its terms. Examples
include the inverse tangent arctan x, the error function erf x,
and the incomplete gamma function Γ (a, x) (see below for de-
tails). For these functions, continued fractions provide a method
of numerical calculation that works when the Taylor series con-
verges slowly or not at all, or is not easily available. However,
continued fractions may converge quickly for one value of x but
slowly for another. Also, it is not as easy to obtain an analytic
error bound for a continued fraction approximation as it is for
power series.

In this section we describe some methods for computing gen-
eral continued fractions and for estimating the number of terms
needed to achieve a given precision.

Let us introduce some notation. A continued fraction

a0 +
b0

a1 + b1
a2+...

is specified by a set of terms (ai, bi). [If continued fractions are
used to approximate analytic functions such as arctan x, then

(ai, bi) will depend on x.] Let us denote by F(m,n) the truncated
fraction containing only the terms from m to n,

F(m,n) ≡ am +
bm

am+1 +
bm+1

...+
bn
an

.

In this notation, the continued fraction that we need to com-
pute is F(0,n). Our task is first, to select a large enough n so
that F(0,n) gives enough precision, and second, to compute that
value.

Method 1: bottom-up with straightforward
division

All “bottom-up” methods need to know the number of terms n
in advance. The simplest method is to start evaluating the frac-
tion from the bottom upwards. As the initial approximation we
take F(n,n) = an. Then we use the obvious relation of backward
recurrence,

F(m,n) = am +
bm

F(m+1,n)

,

to obtain successively F(n−1,n), ..., F(0,n).
This method requires one long division at each step. There

may be significant round-off error if am and bm have opposite
signs, but otherwise the round-off error is very small because a
convergent continued fraction is not sensitive to small changes
in its terms.

Method 2: bottom-up with two recurrences

An alternative implementation may be faster in some cases.
The idea is to obtain the numerator and the denominator of
F(0,n) separately as two simultaneous backward recurrences. If
F(m+1,n) =

pm+1
qm+1

, then pm = ampm+1 + bmqm+1 and qm =

pm+1. The recurrences start with pn = an, qn = 1. The method
requires two long multiplications at each step; the only division
will be performed at the very end. Sometimes this method re-
duces the round-off error as well.

Method 3: bottom-up with estimated re-
mainders

There is an improvement over the bottom-up method that can
sometimes increase the achieved precision without computing
more terms. This trick is suggested in [Tsimring 1988], sec. 2.4,
where it is also claimed that the remainder estimates improve
convergence.

The idea is that the starting value of the backward recur-
rence should be chosen not as an but as another number that
more closely approximates the infinite remainder of the frac-
tion. The infinite remainder, which we can symbolically write
as F(n,∞), can be sometimes estimated analytically (obviously,
we are unable to compute the remainder exactly). In simple
cases, F(n,∞) changes very slowly at large n (warning: this is
not always true and needs to be verified in each particular case!).
Suppose that F(n,∞) is approximately constant; then it must be
approximately equal to F(n+1,∞). Therefore, if we solve the
(quadratic) equation

x = an +
bn

x
,

we shall obtain the (positive) value x which may be a much bet-
ter approximation for F(n,∞) than an. But this depends on the
assumption of the way the continued fraction converges. It may
happen, for example, that for large n the value F(n,∞) is almost

27

the same as F(n+2,∞) but is significantly different from F(n+1,∞).
Then we should instead solve the (quadratic) equation

x = an +
bn

an+1 +
bn+1

x

and take the positive solution x as F(n,∞).
We may use more terms of the original continued fraction

starting from an and obtain a more precise estimate of the re-
mainder. In each case we will only have to solve one quadratic
equation.

Method 4: top-down computation

The “bottom-up” method obviously requires to know the num-
ber of terms n in advance; calculations have to be started all over
again if more terms are needed. Also, the bottom-up method
provides no error estimate.

The “top-down” method is slower but provides an automatic
error estimate and can be used to evaluate a continued fraction
with more and more terms until the desired precision is achieved.
The idea 4 is to replace the continued fraction F(0,n) with a sum
of a certain series,

a0 +
b0

a1 + b1

...+
bn−1

an

=

n∑
k=0

fk.

Here

fk ≡ F(0,k) − F(0,k−1)

(k ≥ 1) is a sequence that will be calculated in the forward di-
rection, starting from k = 1. If we manage to find a formula
for this sequence, then adding one more term fk will be equiva-
lent to recalculating the continued fraction with k terms instead
of k − 1 terms. This will automatically give an error estimate
and allow to compute with more precision if necessary with-
out having to repeat the calculation from the beginning. (The
transformation of the continued fraction into a series is exact,
not merely an approximation.)

The formula for fk is the following. First the auxiliary se-
quence Pk, Qk for k ≥ 1 needs to be defined by P1 = 0, Q1=1,
and Pk+1 ≡ bkQk, Qk+1 ≡ Pk +akQk. Then define f0 ≡ a0 and

fk ≡
(−1)k b0...bk−1

QkQk+1

for k ≥ 1. The “top-down” method consists of computing fn

sequentially and adding them together, until n is large enough
so that fn

f0
is less than the required precision.

Evaluating the next element fk requires four long multipli-
cations and one division. This is significantly slower, compared
with just one long division or two long multiplications in the
bottom-up method. Therefore it is desirable to have an a priori
estimate of the convergence rate and to be able to choose the
number of terms before the computation. Below we shall con-
sider some examples when the formula for fk allows to estimate
the required number of terms analytically.

Method 5: top-down with two steps at once

If all coefficients ai, bi are positive, then the series we obtained
in the top-down method will have terms fk with alternating
signs. This leads to a somewhat larger round-off error. We
can convert the alternating series into a monotonic series by

4This is a well-known result in the theory of continued fractions.
We give an elementary derivation below.

adding together two adjacent elements, say f2k + f2k+1.
5 The

relevant formulae can be derived from the definition of fk using
the recurrence relations for Pk, Qk:

f2k−1 + f2k = − b0...b2k−2a2k

Q2k−1Q2k+1
,

f2k + f2k+1 =
b0...b2k−1a2k+1

Q2kQ2k+2
.

Now in the series f0+(f1 + f2)+(f3 + f4)+... the first term is
positive and all subsequent terms will be negative.

Which method to use

We have just described the following methods of computing a
continued fraction:

1. Bottom-up, straight division.

2. Bottom-up, separate recurrences for numerators and de-
nominators.

3. Bottom-up, with an estimate of the remainder.

4. Top-down, with ordinary step.

5. Top-down, with two steps at once.

The bottom-up methods are simpler and faster than the top-
down methods but require to know the number of terms in ad-
vance. In many cases the required number of terms can be
estimated analytically, and then the bottom-up methods are al-
ways preferable. But in some cases the convergence analysis is
very complicated.

The plain bottom-up method requires one long division at
each step, while the bottom-up method with two recurrences
requires two long multiplications at each step. Since the time
needed for a long division is usually about four times that for a
long multiplication (e.g. when the division is computed by New-
ton’s method), the second variation of the bottom-up method
is normally faster.

The estimate of the remainder improves the convergence of
the bottom-up method and should always be used if available.

If an estimate of the number of terms is not possible, the
top-down methods should be used, looping until the running
error estimate shows enough precision. This incurs a perfor-
mance penalty of at least 100% and at most 300%. The top-down
method with two steps at once should be used only when the
formula for fk results in alternating signs.

Usefulness of continued fractions

Many mathematical functions have a representation as a contin-
ued fraction. Some systems of “exact arithmetic” use continued
fractions as a primary internal representation of real numbers.
This has its advantages (no round-off errors, lazy “exact” com-
putations) and disadvantages (it is slow, especially with some
operations). Here we consider the use of continued fractions
with a traditional implementation of arithmetic (floating-point
numbers with variable precision).

Usually, a continued fraction representation of a function will
converge geometrically or slower, i.e. at least O (P) terms are
needed for a precision of P digits. If a geometrically convergent
Taylor series representation is also available, the continued frac-
tion method will be slower because it requires at least as many
or more long multiplications per term. Also, in most cases the
Taylor series can be computed much more efficiently using the

5This method is used by [Thacher 1963], who refers to a suggestion
by Hans Maehly.

28

rectangular scheme. (See, e.g., the section on arctan x for a
more detailed consideration.)

However, there are some functions for which a Taylor series is
not easily computable or does not converge but a continued frac-
tion is available. For example, the incomplete Gamma function
and related functions can be computed using continued fractions
in some domains of their arguments.

Derivation of the formula for fk

Here is a straightforward derivation of the formula for fk in the
top-down method. We need to compute the difference between
successive approximations F(0,n) and F(0,n+1). The recurrence
relation we shall use is

F(m,n+1) − F(m,n) = −
bm

(
F(m+1,n+1) − F(m+1,n)

)
F(m+1,n+1)F(m+1,n)

.

This can be shown by manipulating the two fractions, or by
using the recurrence relation for F(m,n).

So far we have reduced the difference between F(m,n+1) and
F(m,n) to a similar difference on the next level m + 1 instead
of m; i.e. we can increment m but keep n fixed. We can apply
this formula to F(0,n+1) − F(0,n), i.e. for m = 0, and continue
applying the same recurrence relation until m reaches n. The
result is

F(0,n+1) − F(0,n) =
(−1)n b0...bn

F(1,n+1)...F(n+1,n+1)F(1,n)...F(n,n)

.

Now the problem is to simplify the two long products in the
denominator. We notice that F(1,n) has F(2,n) in the denomina-
tor, and therefore F(1,n)F(2,n) = F(2,n)a1+b1. The next product
is F(1,n)F(2,n)F(3,n) and it simplifies to a linear function of F(3,n),
namely F(1,n)F(2,n)F(3,n) = (b1 + a1a2) F(3,n) + b1a2. So we can
see that there is a general formula

F(1,n)...F(k,n) = Pk + QkF(k,n)

with some coefficients Pk, Qk which do not actually depend on
n but only on the terms of the partial fraction up to k. In other
words, these coefficients can be computed starting with P1 = 0,
Q1 = 1 in the forward direction. The recurrence relations for Pk,
Qk that we have seen above in the definition of fk follow from
the identity

(
Pk + QkF(k,n)

)
F(k+1,n) = Pk+1 + Qk+1F(k+1,n).

Having found the coefficients Pk, Qk, we can now rewrite the
long products in the denominator, e.g.

F(1,n)...F(n,n) = Pn + QnF(n,n) = Qn+1.

(We have used the recurrence relation for Qn+1.) Now it follows
that

fn+1 ≡ F(0,n+1) − F(0,n) =
(−1)n b0...bn

Qn+1Qn+2
.

Thus we have converted the continued fraction into a series, i.e.
F(0,n) =

∑n

k=0
fk with fk defined above.

Examples of continued fraction representa-
tions

We have already mentioned that continued fractions give a com-
putational advantage only when other methods are not avail-
able. There exist continued fraction representations of almost
all functions, but in most cases the usual methods (Taylor se-
ries, identity transformations, Newton’s method and so on) are
superior.

For example, the continued fraction

arctan x =
x

1 + x2

3+
(2x)2

5+
(3x)2
7+...

converges geometrically at all x. However, the Taylor series also
converges geometrically and can be computed much faster than
the continued fraction.

There are some cases when a continued fraction representa-
tion is efficient. The complementary error function erfc x can
be computed using the continued fraction due to Laplace (e.g.
[Thacher 1963]),

√
π

2
x exp

(
x2
)
erfc x =

1

1 + v

1+ 2v

1+ 3v
1+...

,

where v ≡
(
2x2
)−1

. This continued fraction converges for all
(complex) x except pure imaginary x.

The error function is a particular case of the incomplete
Gamma function

Γ (a, z) ≡
∫ +∞

z

xa−1 exp (−x) dx.

There exists an analogous continued fraction representation due
to Legendre (e.g. [Abramowitz et al.], 6.5.31),

Γ (a, z) =
za−1 exp (−z)

1 + (1−a)v
1+ v

1+
(2−a)v

1+ 2v
1+...

,

where v ≡ z−1.

4.10 Estimating convergence of
continued fractions

Elsewhere in this book we have used elementary considerations
to find the required number of terms in a power series. It is much
more difficult to estimate the convergence rate of a continued
fraction. In many cases this can be done using the theory of
complex variable. Below we shall consider some cases when this
computation is analytically tractable.

Suppose we are given the terms ak, bk that define an infinite
continued fraction, and we need to estimate its convergence rate.
We have to find the number of terms n for which the error of
approximation is less than a given ε. In our notation, we need
to solve |fn+1| < ε for n.

The formula that we derived for fn+1 gives an error estimate
for the continued fraction truncated at the n-th term. But this
formula contains the numbers Qn in the denominator. The main
problem is to find how quickly the sequence Qn grows. The
recurrence relation for this sequence can be rewritten as

Qn+2 = an+1Qn+1 + bnQn,

for k ≥ 0, with initial values Q0 = 0 and Q1 = 1. It is not
always easy to get a handle on this sequence, because in most
cases there is no closed-form expression for Qn.

Simple bound on Qn

A simple lower bound on the growth of Qn can be obtained from
the recurrence relation for Qn. Assume that ak > 0, bk > 0. It

29

is clear that all Qn are positive, so Qn+1 ≥ anQn. Therefore
Qn grows at least as the product of all an:

Qn+1 ≥
n∏

i=1

an.

This result gives the following upper bound on the precision,

|fn+1| ≤
b0...bn

(a1...an)2 an+1

.

We have used this bound to estimate the relative error of the
continued fraction expansion for arctan x at small x (elsewhere
in this book). However, we found that at large x this bound
becomes greater than 1. This does not mean that the contin-
ued fraction does not converge and cannot be used to compute
arctan x when x > 1, but merely indicates that the “simple
bound” is too weak. The sequence Qn actually grows faster
than the product of all ak and we need a tighter bound on this
growth. In many cases such a bound can be obtained by the
method of generating functions.

The method of generating functions

The idea is to find a generating function G (s) of the sequence Qn

and then use an explicit form of G (s) to obtain an asymptotic
estimate of Qn at large k.

The asymptotic growth of the sequence Qn can be estimated
by the method of steepest descent, also known as Laplace’s
method. (See, e.g., [Olver 1974], ch. 3, sec. 7.5.) This method
is somewhat complicated but quite powerful. The method re-
quires that we find an integral representation for Qn (usually
a contour integral in the complex plane). Then we can convert
the integral into an asymptotic series in k−1.

Along with the general presentation of the method, we shall
consider an example when the convergence rate can be obtained
analytically. The example is the representation of the comple-
mentary error function erfc x,

√
π

2
x exp

(
x2
)
erfc x =

1

1 + v

1+ 2v

1+ 3v
1+...

,

where v ≡
(
2x2
)−1

. We shall assume that |v| < 1
2

since the
continued fraction representation will not be used for small x
(where the Taylor series is efficient). The terms of this continued
fraction are: ak = 1, bk = kv, for k ≥ 1, and a0 = 0, b0 = 1.

The “simple bound” would give |fn+1| ≤ vnn! and this ex-
pression grows with n. But we know that the above continued
fraction actually converges for any v, so fn+1 must tend to zero
for large n. It seems that the “simple bound” is not strong
enough for any v and we need a better bound.

An integral representation for Qn can be obtained using the
method of generating functions. Consider a function G (s) de-
fined by the infinite series

G (s) =

∞∑
n=0

Qn+1
sn

n!
.

G (s) is usually called the “generating function” of a sequence.
We shifted the index to n + 1 for convenience, since Q0 = 0, so
now G (0) = 1.

Note that the above series for the function G (s) may or may
not converge for any given s; we shall manipulate G (s) as a
formal power series until we obtain an explicit representation.
What we really need is an analytic continuation of G (s) to the
complex s.

It is generally the case that if we know a simple linear re-
currence relation for a sequence, then we can also easily find
its generating function. The generating function will satisfy a
linear differential equation. To guess this equation, we write
down the series for G (s) and its derivative G′ (s) and try to
find their linear combination which is identically zero because
of the recurrence relation. (There is, of course, a computer al-
gebra algorithm for doing this automatically.)

Taking the derivative G′ (s) produces the forward-shifted se-
ries

G′ (s) =

∞∑
n=0

Qn+2
sn

n!
.

Multiplying G (s) by s produces a back-shifted series with each
term multiplied by n:

sG (s) =

∞∑
n=0

nQn
sn

n!
.

If the recurrence relation for Qn contains only constants and
polynomials in n, then we can easily convert that relation into
a differential equation for G (s). We only need to find the right
combination of back- and forward-shifts and multiplications by
n.

In the case of our sequence Qn above, the recurrence relation
is

Qn+2 = Qn+1 + vnQn.

This is equivalent to the differential equation

G′ (s) = (1 + vs) G (s) .

The solution with the obvious initial condition G (0) = 1 is

G (s) = exp

(
s +

vs2

2

)
.

The second step is to obtain an integral representation for
Qn, so that we could use the method of steepest descents and
find its asymptotic at large n.

In our notation Qn+1 is equal to the n-th derivative of the
generating function at s = 0:

Qn+1 =
dn

dsn
G (s = 0) ,

but it is generally not easy to estimate the growth of this deriva-
tive at large n.

There are two ways to proceed. One is to obtain an integral
representation for G (s), for instance

G (s) =

∫ ∞

−∞
F (t, s) dt,

where F (t, s) is some known function. Then an integral repre-
sentation for Qn will be found by differentiation. But it may be
difficult to find such F (t, s).

The second possibility is to express Qn as a contour integral
in the complex plane around s = 0 in the counter-clockwise
direction:

Qn =
(n− 1)!

2πı

∫
G (s) s−nds.

If we know the singularities and of G (s), we may transform the
contour of the integration into a path that is more convenient
for the method of the steepest descent. This procedure is more
general but requires a detailed understanding of the behavior of
G (s) in the complex plane.

In the particular case of the continued fraction for erfc x, the
calculations are somewhat easier if Re (v) > 0 (where v ≡ 1

2x2).

30

Full details are given in a separate section. The result for
Re (v) > 0 is

Qn ≈ (vn)
n
2

√
2nv

exp
(√

n

v
− 1

4v
− n

2

)
.

This, together with Stirling’s formula

n! ≈
√

2πn
(

n

e

)n

,

allows to estimate the error of the continued fraction approxi-
mation:

fn+1 ≈ 2 (−1)n+1

√
2π

v
exp
(
−2

√
n

v
+

1

2v

)
.

Note that this is not merely a bound but an actual asymptotic
estimate of fn+1. (Stirling’s formula can also be derived using
the method of steepest descent from an integral representation
of the Gamma function, in a similar way.)

Defined as above, the value of fn+1 is in general a complex
number. The absolute value of fn+1 can be found using the
formula

Re
(√

n

v

)
=

√
n

2

√
1 +

Re (v)

|v| .

We obtain

|fn+1| ≈ 2

√
2π

|v| exp

(
−
√

2n

√
1 +

Re (v)

|v| +
Re (v)

2 |v|2

)
.

When Re (v) ≤ 0, the same formula can be used (this can be
shown by a more careful consideration of the branches of the
square roots). The continued fraction does not converge when
Re (v) < 0 and Im (v) = 0 (i.e. for pure imaginary x). This can
be seen from the above formula: in that case Re (v) = − |v| and
|fn+1| does not decrease when n grows.

These estimates show that the error of the continued fraction
approximation to erfc x (when it converges) decreases with n
slower than in a geometric progression. This means that we
need to take O

(
P 2
)

terms to get P digits of precision.

Derivations for the example with erfc x

Here we give a detailed calculation of the convergence rate of
the continued fraction for erfc x using the method of generating
functions.

A simpler approach

In our case, G (s) is a function with a known Fourier transform
and we can obtain a straightforward representation valid when
Re (v) > 0,

Qn+1 =
1√
2πv

∫ ∞

−∞
(1 + t)n exp

(
− t2

2v

)
dt.

We shall first apply the method of steepest descent to this inte-
gral (assuming real v > 0 for simplicity) and then consider the
more general procedure with the contour integration.

To use the method of steepest descent, we represent the inte-
grand as an exponential of some function g (t, n) and find “sta-
tionary points” where this function has local maxima:

Qn+1 =
1√
2πv

∫ ∞

−∞
exp (g (t, n)) dt,

g (t, n) ≡ − t2

2v
+ n ln (1 + t) .

(Note that the logarithm here must acquire an imaginary part
ıπ for t < −1, and we should take the real part which is equal
to ln |1 + t|. We shall see that the integral over negative t is
negligible.) We expect that when n is large, Re (g (t, n)) will
have a peak or several peaks at certain values of t. When t is
not close to the peaks, the value of Re (g (t, n)) is smaller and,
since g is in the exponential, the integral is dominated by the
contribution of the peaks. This is the essence of the method of
steepest descent on the real line.

We only need to consider very large values of n, so we can

neglect terms of order O
(

1√
n

)
or smaller. We find that, in our

case, two peaks of Re (g) occur at approximately t1 ≈ − 1
2
+
√

nv
and t2 ≈ − 1

2
−
√

nv. We assume that n is large enough so that
nv > 1

2
. Then the first peak is at a positive t and the second

peak is at a negative t. The contribution of the peaks can be
computed from the Taylor approximation of g (t, n) near the
peaks. We can expand, for example,

g (t, n) ≈ g (t1, n) +

(
∂2

∂t2
g (t1, n)

)
(t− t1)

2

2

near t = t1. The values g (t1, n) and ∂2

∂t2
g (t1, n), and likewise

for t2, are constants that we already know since we know t1 and
t2. Then the integral of exp (g) will be approximated by the
integral∫ ∞

−∞
exp

(
g (t1, n) +

(
∂2

∂t2
g (t1, n)

)
(t− t1)

2

2

)
dt.

(Note that ∂2

∂t2
g (t1, n) is negative.) This is a Gaussian integral

that can be easily evaluated, with the result

exp (g (t1, n))

√
− 2π

∂2

∂t2
g (t1, n)

.

This is the leading term of the contribution of the peak at t1;
there will be a similar expression for the contribution of t2. We
find that the peak at t1 gives a larger contribution, by the factor
exp
(
2
√

n
v

)
. This factor is never small since n > 1 and v < 1

2
.

So it is safe to ignore the peak at t2 for the purposes of our
analysis.

Then we obtain the estimate

Qn+1 ≈
1√
2

exp
(√

n

v
− 1

4v
− n

2

)
(vn)

n
2 .

The contour integral approach

In many cases it is impossible to compute the Fourier transform
of the generating function G (s). Then one can use the contour
integral approach. One should represent the integrand as

G (s) s−n = exp (g (s))

where
g (s) ≡ ln G (s)− n ln s,

and look for stationary points of g (s) in the complex plane (0 =
0). The original contour is around the pole s = 0 in the counter-
clockwise direction. We need to deform that contour so that the
new contour passes through the stationary points. The contour
should cross each stationary point in a certain direction in the
complex plane. The direction is chosen to make the stationary
point the sharpest local maximum of Re (g (s)) on the contour.

Usually one of the stationary points has the largest value
of Re (g (s)); this is the dominant stationary point. If s0 is

the dominant stationary point and g2 = d2

ds2 g (s0) is the second

31

derivative of g at that point, then the asymptotic of the integral
is

1

2π

∫
exp (g (s)) ds =

1√
2π |g2|

exp (g (s0)) .

(The integral will have a negative sign if the contour crosses the
point s0 in the negative imaginary direction.)

We have to choose a new contour and check the convergence
of the resulting integral separately. In each case we may need to
isolate the singularities of G (s) or to find the regions of infinity
where G (s) quickly decays (so that the infinite parts of the
contour might be moved there). There is no prescription that
works for all functions G (s).

Let us return to our example. For G (s) = exp
(
s + vs2

2

)
,

the function g (s) has no singularities except the pole at s = 0.
There are two stationary points located at the (complex) roots
s1, s2 of the quadratic equation vs2 + s − n = 0. Note that
v is an arbitrary (nonzero) complex number. We now need
to find which of the two stationary points gives the dominant
contribution. By comparing Re (g (s1)) and Re (g (s2)) we find
that the point s with the largest real part gives the dominant
contribution. However, if Re (s1) = Re (s2) (this happens only
if v is real and v < 0, i.e. if x is pure imaginary), then both
stationary points contribute equally. Barring that possibility,
we find (with the usual definition of the complex square root)
that the dominant contribution for large n is from the stationary
point at

s1 =

√
4nv + 1− 1

2v
.

The second derivative of g (s) at the stationary point is approx-
imately 2v. The contour of integration can be deformed into a
line passing through the dominant stationary point in the posi-
tive imaginary direction. Then the leading asymptotic is found
using the Gaussian approximation (assuming Re (v) > 0):

Qn =
(n− 1)!v

n
2

√
4πv

exp

(
n (1− ln n)

2
+

√
n

v
− 1

4v

)
.

This formula agrees with the asymptotic for Qn+1 found
above for real v > 0, when we use Stirling’s formula for (n− 1)!:

(n− 1)! =
√

2πe−nnn− 1
2 .

The treatment for Re (v) < 0 is similar.

4.11 Newton’s method and its im-
provements

Newton’s method (also called the Newton-Raphson method) of
numerical solution of algebraic equations and its generalizations
can be used to obtain multiple-precision values of several ele-
mentary functions.

Newton’s method

The basic formula is widely known: If f (x) = 0 must be solved,
one starts with a value of x that is close to some root and iterates

x′ = x− f (x)
(

d

dx
f (x)

)−1

.

This formula is based on the approximation of the function f (x)
by a tangent line at some point x. A Taylor expansion in the
neighborhood of the root shows that (for an initial value x0

sufficiently close to the root) each iteration gives at least twice as
many correct digits of the root as the previous one (“quadratic

convergence”). Therefore the complexity of this algorithm is
proportional to a logarithm of the required precision and to
the time it takes to evaluate the function and its derivative.
Generalizations of this method require computation of higher
derivatives of the function f (x) but successive approximations
to the root converge several times faster (the complexity is still
logarithmic).

Newton’s method sometimes suffers from a sensitivity to the
initial guess. If the initial value x0 is not chosen sufficiently
close to the root, the iterations may converge very slowly or not
converge at all. To remedy this, one can combine Newton’s it-
eration with simple bisection. Once the root is bracketed inside
an interval (a, b), one checks whether a+b

2
is a better approxi-

mation for the root than that obtained from Newton’s iteration.
This guarantees at least linear convergence in the worst case.

For some equations f (x) = 0, Newton’s method converges
faster than quadratically. For example, solving sin x = 0 in the
neighborhood of x = 3.14159 gives “cubic” convergence, i.e. the
number of correct digits is tripled at each step. This happens
because sin x near its root x = π has a vanishing second deriva-
tive and thus the function is particularly well approximated by
a straight line.

Halley’s method

Halley’s method is an improvement over Newton’s method that
makes each equation well approximated by a straight line near
the root. Edmund Halley computed fractional powers, x = n

√
a,

by the iteration

x′ = x
n (a + xn) + a− xn

n (a + xn)− (a− xn)
.

This formula is equivalent to Newton’s method applied to the
equation xn−q = ax−q with q = n−1

2
. This iteration has a cubic

convergence rate. This is the fastest method to compute n-
th roots (n ≥ 3) with multiple precision. Iterations with higher
order of convergence, for example, the method with quintic con-
vergence rate

x′ = x
n−1
n+1

2n−1
2n+1

x2n + 2 2n−1
n+1

xna + a2

x2n + 2 2n−1
n+1

xna + n−1
n+1

2n−1
2n+1

a2
,

require more arithmetic operations per step and are in fact less
efficient at high precision.

Halley’s method can be generalized to any function f (x). A
cubically convergent iteration is always obtained if we replace
the equation f (x) = 0 by an equivalent equation

g (x) ≡ f (x)√∣∣ d
dx

f (x)
∣∣ = 0

and use the standard Newton’s method on it. Here the function
g (x) is chosen so that its second derivative vanishes (d2

dx2 g (x) =
0) at the root of the equation f (x) = 0, independently of where
this root is. For example, the equation exp (x) = a is trans-
formed into g (x) ≡ exp

(
x
2

)
− a exp

(
−x

2

)
= 0. (There is no

unique choice of the function g (x) and sometimes another choice
will make the iteration more quickly computable.)

The Halley iteration for the equation f (x) = 0 can be written
as

x′ = x−
2f (x)

(
d

dx
f (x)

)
2
(

d
dx

f (x)
)2 − f (x)

(
d2

dx2 f (x)
) .

Halley’s iteration, despite its faster convergence rate, may be
more cumbersome to evaluate than Newton’s iteration and so it
may not provide a more efficient numerical method for a given

32

function. Only in some special cases is Halley’s iteration just as
simple to compute as Newton’s iteration.

Halley’s method is sometimes less sensitive to the choice of the
initial point x0. An extreme example of sensitivity to the initial
point is the equation x−2 = 12 for which Newton’s iteration
x′ = 3

2
x−6x3 converges to the root only from initial points 0 <

x0 < 0.5 and wildly diverges otherwise, while Halley’s iteration
converges to the root from any x0 > 0.

It is at any rate not true that Halley’s method always con-
verges better than Newton’s method. For instance, it diverges
on the equation 2 cos x = x unless started at x0 within the in-
terval (− 1

6
π, 7

6
π). Another example is the equation ln x = a.

This equation allows to compute x = exp (a) if a fast method
for computing ln x is available (e.g. the AGM-based method).
For this equation, Newton’s iteration

x′ = x (1 + a− ln x)

converges for any 0 < x < exp (a + 1), while Halley’s iteration
converges only if exp (a− 2) < x < exp (a + 2).

When it converges, Halley’s iteration can still converge very
slowly for certain functions f (x), for example, for f (x) = xn−a
if nn > a. For such functions that have very large and rapidly
changing derivatives, no general method can converge faster
than linearly. In other words, a simple bisection will generally
do just as well as any sophisticated iteration, until the root is
approximated very precisely. Halley’s iteration combined with
bisection seems to be a good choice for such problems.

When to use Halley’s method

Despite its faster convergence, Halley’s iteration frequently gives
no advantage over Newton’s method. To obtain P digits of the
result, we need about ln P

ln 2
iterations of a quadratically conver-

gent method and about ln P
ln 3

iterations of a cubically convergent
method. So the cubically convergent iteration is faster only if
the time taken by cubic one iteration is less than about ln 3

ln 2
≈ 1.6

of the time of one quadratic iteration.

Higher-order schemes

Sometimes it is easy to generalize Newton’s iteration to higher-
order schemes. There are general formulae such as Shroeder’s
and Householder’s iterations. We shall give some examples
where the construction is very straightforward. In all exam-
ples x is the initial approximation and the next approximation
is obtained by truncating the given series.

1. Inverse 1
a
. Set y = 1− ax, then

1

a
=

x

1− y
= x

(
1 + y + y2 + ...

)
.

2. Square root
√

a. Set y = 1− ax2, then

√
a =

√
1− y

x
=

1

x

(
1− 1

2
y − 1

8
y2 − ...

)
.

3. Inverse square root 1√
a
. Set y = 1− ax2, then

1√
a

=
x√

1− y
= x

(
1 +

1

2
y +

3

8
y2 + ...

)
.

4. n-th root n
√

a. Set y = 1− axn, then

n
√

a =
n
√

1− y

x
=

1

x

(
1− 1

n
y − n− 1

2n2
y2 − ...

)
.

5. Exponential exp (a). Set y = a− ln x, then

exp (a) = x exp (y) = x

(
1 + y +

y2

2!
+

y3

3!
+ ...

)
.

6. Logarithm ln a. Set y = 1− a exp (−x), then

ln a = x + ln (1− y) = x− y − y2

2
− y3

3
−

In the above examples, y is a small quantity and the series
represents corrections to the initial value x, therefore the order
of convergence is equal to the first discarded order of y in the
series.

These simple constructions are possible because the functions
satisfy simple identities, such as exp (a + b) = exp (a) exp (b) or√

ab =
√

a
√

b. For other functions the formulae quickly become
very complicated and unsuitable for practical computations.

Precision control

Newton’s method and its generalizations are particularly conve-
nient for multiple precision calculations because of their insen-
sitivity to accumulated errors: if at some iteration xk is found
with a small error, the error will be corrected at the next itera-
tion. Therefore it is not necessary to compute all iterations with
the full required precision; each iteration needs to be performed
at the precision of the root expected from that iteration (plus a
few more digits to allow for round-off error). For example, if we
know that the initial approximation is accurate to 3 digits, then
(assuming quadratic convergence) 6 it is enough to perform the
first iteration to 6 digits, the second iteration to 12 digits and so
on. In this way, multiple-precision calculations are enormously
speeded up.

For practical evaluation, iterations must be supplemented
with “quality control”. For example, if x0 and x1 are two consec-
utive approximations that are already very close, we can quickly
compute the achieved (relative) precision by finding the number
of leading zeros in the number

|x0 − x1|
max (x0, x1)

.

This is easily done using the bit count function. After perform-
ing a small number of initial iterations at low precision, we can
make sure that x1 has at least a certain number of correct digits
of the root. Then we know which precision to use for the next
iteration (e.g. triple precision if we are using a cubically con-
vergent scheme). It is important to perform each iteration at
the precision of the root which it will give and not at a higher
precision; this saves a great deal of time since all calculations
are very slow at high precision.

Fine-tuning the working precision

To reduce the computation time, it is important to write the
iteration formula with explicit separation of higher-order quan-
tities. For example, Newton’s iteration for the inverse square
root 1√

a
can be written either as

x′ = x
3− ax2

2

6This disregards the possibility that the convergence might be
slightly slower. For example, when the precision at one iteration is n
digits, it might be 2n−10 digits at the next iteration. In these (fringe)
cases, the initial approximation must be already precise enough (e.g.
to at least 10 digits in this example).

33

or equivalently as

x′ = x + x
1− ax2

2
.

At first sight the first formula seems simpler because it saves one
long addition. However, the second formula can be computed
significantly faster than the first one, if we are willing to exercise
a somewhat more fine-grained control of the working precision.

Suppose x is an approximation that is correct to P digits;
then we expect the quantity x′ to be correct to 2P digits. There-
fore we should perform calculations in the first formula with 2P
digits; this means three long multiplications, 3M (2P). Now
consider the calculation in the second formula. First, the quan-
tity y ≡ 1−ax2 is computed using two 2P -digit multiplications.
7 Now, the number y is small and has only P nonzero dig-
its. Therefore the third multiplication xy costs only M (P), not
M (2P). This is a significant time savings, especially with slower
multiplication. The total cost is now 2M (2P) + M (P).

The advantage is even greater with higher-order methods.
For example, a fourth-order iteration for the inverse square root
can be written as

x′ = x +
1

2
xy +

3

8
xy2 +

5

16
xy3,

where y ≡ 1−ax2. Suppose x is an approximation that is correct
to P digits; we expect 4P correct digits in x′. We need two long
multiplications in precision 4P to compute y, then M (3P) to
compute xy, M (2P) to compute xy2, and M (P) to compute
xy3. The total cost is 2M (4P) + M (3P) + M (2P) + M (P).

The asymptotic cost of finding the root x of the equation
f (x) = 0 with P digits of precision is usually the same as the
cost of computing f (x) [Brent 1975]. The main argument can
be summarized by the following simple example. To get the
result to P digits, we need O (ln P) Newton’s iterations. At
each iteration we shall have to compute the function f (x) to a
certain number of digits. Suppose that we start with one correct
digit and that each iteration costs us cM (2P) operations where
c is a given constant, while the number of correct digits grows
from P to 2P . Then the total cost of k iterations is

cM (2) + cM (4) + cM (8) + ... + cM
(
2k
)

.

If the function M (P) grows linearly with P = 2k, then we can
estimate this sum roughly as 2cM (P); if M (P) = O

(
P 2
)

then

the result is about 4
3
cM (P). It is easy to see that when M (P)

is some power of P that grows faster than linear, the sum is not
larger than a small multiple of M (P).

Thus, if we have a fast method of computing, say, arctan x,
then we immediately obtain a method of computing tan x which
is asymptotically as fast (up to a constant).

Choosing the optimal order

Suppose we need to compute a function by Newton’s method
to precision P . We can sometimes find iterations of any or-
der of convergence. For example, a k-th order iteration for the
reciprocal 1

a
is

x′ = x + xy + xy2 + ... + xyk−1,

where y ≡ 1− ax. The cost of one iteration with final precision
P is

C (k, P) ≡ M
(

P

k

)
+ M

(
2P

k

)
+ M

(
3P

k

)
+ ... + cM (P) .

7In fact, both multiplications are a little shorter, since x is a num-
ber with only P correct digits; we can compute ax and then ax2 as
products of a 2P -digit number and a P -digit number, with a 2P -digit
result. We ignore this small difference.

(Here the constant c ≡ 1 is introduced for later convenience. It
denotes the number of multiplications needed to compute y.)

Increasing the order by 1 costs us comparatively little, and
we may change the order k at any time. Is there a particular
order k that gives the smallest computational cost and should be
used for all iterations, or the order needs to be adjusted during
the computation? A natural question is to find the optimal
computational strategy.

It is difficult to fully analyze this question, but it seems that
choosing a particular order k for all iterations is close to the
optimal strategy.

A general “strategy” is a set of orders S (P, P0)=(k1, k2, ...,
kn) to be chosen at the first, second, ..., n-th iteration, given
the initial precision P0 and the required final precision P . At
each iteration, the precision will be multiplied by the factor ki.
The optimal strategy S (P, P0) is a certain function of P0 and
P such that the required precision is reached, i.e.

P0k1...kn = P,

and the cost

C (k1, P0k1) + C (k2, P0k1k2) + ... + C (kn, P)

is minimized.
If we assume that the cost of multiplication M (P) is pro-

portional to some power of P , for instance M (P) = P µ, then
the cost of each iteration and the total cost are homogeneous
functions of P and P0. Therefore the optimal strategy is a func-
tion only of the ratio P

P0
. We can multiply both P0 and P by a

constant factor and the optimal strategy will remain the same.
We can denote the optimal strategy S

(
P
P0

)
.

We can check whether it is better to use several iterations at
smaller orders instead of one iteration at a large order. Suppose
that M (P) = P µ, the initial precision is 1 digit, and the final
precision P = kn. We can use either n iterations of the order k
or 1 iteration of the order P . The cost of one iteration of order
P at target precision P is C (P, P), whereas the total cost of n
iterations of order k is

C (k, k) + C
(
k, k2

)
+ ... + C (k, kn) .

With C (k, P) defined above, we can take approximately

C (k, p) ≈ pµ

(
c− 1 +

k

µ + 1

)
.

Then the cost of one P -th order iteration is

P µ

(
c− 1 +

P

µ + 1

)
,

while the cost of n iterations of the order k is clearly smaller
since k < P ,

P µ

(
c− 1 +

k

µ + 1

)
kµ

kµ − 1
.

At fixed P , the best value of k is found by minimizing this
function. For c = 1 (reciprocal) we find k = µ

√
1 + µ which is

never above 2. This suggests that k = 2 is the best value for
finding the reciprocal 1

a
. However, larger values of c can give

larger values of k. The equation for the optimal value of k is

kµ+1

µ + 1
− k = µ (c− 1) .

So far we have only considered strategies that use the same
order k for all iterations, and we have not yet shown that such
strategies are the best ones. We now give a plausible argument
(not quite a rigorous proof) to justify this claim.

34

Consider the optimal strategy S
(
P 2
)

for the initial precision

1 and the final precision P 2, when P is very large. Since it
is better to use several iterations at lower orders, we may as-
sume that the strategy S

(
P 2
)

contains many iterations and that
one of these iterations reaches precision P . Then the strategy
S
(
P 2
)

is equivalent to a sequence of the two optimal strategies

to go from 1 to P and from P to P 2. However, both strategies
must be the same because the optimal strategy only depends on
the ratio of precisions. Therefore, the optimal strategy S

(
P 2
)

is a sequence of two identical strategies (S (P), S (P)).

Suppose that k1 is the first element of S (P). The optimal
strategy to go from precision k1 to precision Pk1 is also S (P).
Therefore the second element of S (P) is also equal to k1, and
by extension all elements of S (P) are the same.

A similar consideration gives the optimal strategy for other
iterations that compute inverses of analytic functions, such as
Newton’s iteration for the inverse square root or for higher roots.
The difference is that the value of c should be chosen as the
equivalent number of multiplications needed to compute the
function. For instance, c = 1 for division and c = 2 for the
inverse square root iteration.

The conclusion is that in each case we should compute the
optimal order k in advance and use this order for all iterations.

4.12 Fast evaluation of Taylor se-
ries

Taylor series for analytic functions is a common method of eval-
uation.

Method 1: simple summation

If we do not know the required number of terms in advance, we
cannot do any better than just evaluate each term and check
if it is already small enough. Take, for example, the series for
exp (x). To straightforwardly evaluate

exp (x) ≈
N−1∑
k=0

xk

k!

with P decimal digits of precision and x < 2, one would need
about N ≈ P ln 10

ln P
terms of the series.

Divisions by large integers k! and separate evaluations of pow-
ers xk are avoided if we store the previous term. The next term
can be obtained by a short division of the previous term by
k and a long multiplication by x. Then we only need O (N)
long multiplications to evaluate the series. Usually the required
number of terms N = O (P), so the total cost is O (PM (P)).

There is no accumulation of round-off error in this method if
x is small enough (in the case of exp (x), a sufficient condition
is |x| < 1

2
). To see this, suppose that x is known to P digits

(with relative error 10−P). Since |x| < 1
2
, the n-th term xn

n!
<

4−n (this is a rough estimate but it is enough). Since each
multiplication by x results in adding 1 significant bit of relative
round-off error, the relative error of xn

n!
is about 2n times the

relative error of x, i.e. 2n ·10−P . So the absolute round-off error
of xn

n!
is not larger than

∆ < 4−n · 2n · 10−P = 2−n · 10−P .

Therefore all terms with n > 1 contribute less than 10−P of
absolute round-off error, i.e. less than was originally present in
x.

In practice, one could truncate the precision of xn

n!
as n grows,

leaving a few guard bits each time to keep the round-off er-
ror negligibly small and yet to gain some computation speed.
This however does not change the asymptotic complexity of the
method—it remains O (PM (P)).

However, if x is a small rational number, then the multiplica-
tion by x is short and takes O (P) operations. In that case, the
total complexity of the method is O

(
P 2
)

which is always faster
than O (PM (P)).

Method 2: Horner’s scheme

Horner’s scheme is widely known and consists of the following
rearrangement,

N−1∑
k=0

akxk = a0 + x (a1 + x (a2 + x (... + xaN−1)))

The calculation is started from the last coefficient aN−1 toward
the first. If x is small, then the round-off error generated during
the summation is constantly being multiplied by a small number
x and thus is always insignificant. Even if x is not small or if the
coefficients of the series are not small, Horner’s scheme usually
results in a smaller round-off error than the simple summation.

If the coefficients ak are related by a simple ratio, then
Horner’s scheme may be modified to simplify the calculations.
For example, the Horner scheme for the Taylor series for exp (x)
may be written as

N−1∑
k=0

xk

k!
= 1 + x

(
1 +

x

2

(
1 +

x

3

(
... +

x

N − 1

)))
.

This avoids computing the factorial function.
Similarly to the simple summation method, the working pre-

cision for Horner’s scheme may be adjusted to reduce the com-
putation time: for example, xaN−1 needs to be computed
with just a few significant digits if x is small. This does not
change the asymptotic complexity of the method: it requires
O (N) = O (P) long multiplications by x, so for general real x
the complexity is again O (PM (P)). However, if x is a small
rational number, then the multiplication by x is short and takes
O (P) operations. In that case, the total complexity of the
method is O

(
P 2
)
.

Method 3: “rectangular” or “baby
step/giant step”

We can organize the calculation much more efficiently if we are
able to estimate the necessary number of terms and to afford
some storage (see [Smith 1989]).

The “rectangular” algorithm uses 2
√

N long multiplications
(assuming that the coefficients of the series are short ratio-
nal numbers) and

√
N units of storage. For high-precision

floating-point x, this method provides a significant advantage
over Horner’s scheme.

Suppose we need to evaluate
∑N

k=0
akxk and we know the

number of terms N in advance. Suppose also that the coeffi-
cients ak are rational numbers with small numerators and de-
nominators, so a multiplication akx is not a long multiplication
(usually, either ak or the ratio ak/ak−1 is a short rational num-
ber). Then we can organize the calculation in a rectangular
array with c columns and r rows like this,

a0 + arx
r + ... + a(c−1)rx

(c−1)r+

x
(
a1 + ar+1x

r + ... + a(c−1)r+1x
(c−1)r

)
+

35

...+

xr−1 (ar−1 + a2r+1x
r + ...) .

To evaluate this rectangle, we first compute xr (which, if done by
the fast binary algorithm, requires O (ln r) long multiplications).
Then we compute the c−1 successive powers of xr, namely x2r,
x3r, ..., x(c−1)r in c−1 long multiplications. The partial sums in
the r rows are evaluated column by column as more powers of xr

become available. This requires storage of r intermediate results
but no more long multiplications by x. If a simple formula
relating the coefficients ak and ak−1 is available, then a whole
column can be computed and added to the accumulated row
values using only short operations, e.g. ar+1x

r can be computed
from arx

r (note that each column contains some consecutive
terms of the series). Otherwise, we would need to multiply each
coefficient ak separately by the power of x; if the coefficients
ak are short numbers, this is also a short operation. After this,
we need r − 1 more multiplications for the vertical summation
of rows (using the Horner scheme). We have potentially saved
time because we do not need to evaluate powers such as xr+1

separately, so we do not have to multiply x by itself quite so
many times.

The total required number of long multiplications is r + c +
ln r − 2. The minimum number of multiplications, given that
rc ≥ N , is around 2

√
N at r ≈

√
N − 1

2
. Therefore, by ar-

ranging the Taylor series in a rectangle with sides r and c, we
obtain an algorithm which costs O

(√
N
)

instead of O (N) long

multiplications and requires
√

N units of storage.

One might wonder if we should not try to arrange the Taylor
series in a cube or another multidimensional matrix instead of
a rectangle. However, calculations show that this does not save
time: the optimal arrangement is the two-dimensional rectangle.

The rectangular method saves the number of long multipli-
cations by x but increases the number of short multiplications
and additions. If x is a small integer or a small rational number,
multiplications by x are fast and it does not make sense to use
the rectangular method. Direct evaluation schemes are more
efficient in that case.

Truncating the working precision

At the k-th step of the rectangular method, we are evaluating
the k-th column with terms containing xrk. Since a power series
in x is normally used at small x, the number xrk is typically
much smaller than 1. This number is to be multiplied by some
ai and added to the previously computed part of each row, which
is not small. Therefore we do not need all P floating-point digits
of the number xrk, and the precision with which we obtain it can
be gradually decreased from column to column. For example,
if xr < 10−M , then we only need P − kM decimal digits of
xrk when evaluating the k-th column. (This assumes that the
coefficients ai do not grow, which is the case for most of the
practically useful series.)

Reducing the working precision saves some computation time.
(We also need to estimate M but this can usually be done
quickly by bit counting.) Instead of O

(√
P
)

long multiplica-
tions at precision P , we now need one long multiplication at
precision P , another long multiplication at precision P−M , and
so on. This technique will not change the asymptotic complex-
ity which remains O

(√
PM (P)

)
, but it will reduce the constant

factor in front of the O.

Like the previous two methods, there is no accumulated
round-off error if x is small.

Which method to use

There are two cases: first, the argument x is a small integer
or rational number with very few digits and the result needs to
be found as a floating-point number with P digits; second, the
argument x itself is a floating-point number with P digits.

In the first case, it is better to use either Horner’s scheme (for
small P , slow multiplication) or the binary splitting technique
(for large P , fast multiplication). The rectangular method is
actually slower than Horner’s scheme if x and the coefficients
ak are small rational numbers. In the second case (when x is
a floating-point number), it is better to use the “rectangular”
algorithm.

In both cases we need to know the number of terms in ad-
vance, as we will have to repeat the whole calculation if a few
more terms are needed. The simple summation method rarely
gives an advantage over Horner’s scheme, because it is almost
always the case that one can easily compute the number of terms
required for any target precision.

Note that if the argument x is not small, round-off error will
become significant and needs to be considered separately for a
given series.

Speed-up for some functions

An additional speed-up is possible if the function allows a trans-
formation that reduces x and makes the Taylor series converge
faster. For example, ln x = 2 ln

√
x, cos 2x = 2 (cos x)2 − 1 (bi-

section), and sin 3x = 3 sin x − 4 (sin x)3 (trisection) are such
transformations. It may be worthwhile to perform a number
of such transformations before evaluating the Taylor series, if
the time saved by its quicker convergence is more than the time
needed to perform the transformations. The optimal number of
transformations can be estimated. Using this technique in prin-
ciple reduces the cost of Taylor series from O

(√
N
)

to O
(

3
√

N
)

long multiplications. However, additional round-off error may
be introduced by this procedure for some x.

For example, consider the Taylor series for sin x,

sin x ≈
N−1∑
k=0

(−1)k x2k+1

(2k + 1)!
.

It is sufficient to be able to evaluate sin x for 0 < x < π
2
. Sup-

pose we perform l steps of the trisection and then use the Taylor
series with the rectangular method. Each step of the trisection
needs two long multiplications. The value of x after l trisection
steps becomes much smaller, x′ = x · 3−l. For this x′, the re-
quired number of terms in the Taylor series for P decimal digits
of precision is

N ≈ P ln 10

2 (ln P − ln x′)
− 1.

The number of long multiplications in the rectangular method
is 2

√
N . The total number of long multiplications, as a function

of l, has its minimum at

l ≈ 3

√
32

ln 10

ln 3
P − ln P − ln x

ln 3
,

where it has a value roughly proportional to 3
√

P . Therefore we
shall minimize the total number of long multiplications if we
first perform l steps of trisection and then use the rectangular
method to compute N terms of the Taylor series.

36

4.13 Using asymptotic series for
calculations

Several important analytic functions have asymptotic series ex-
pansions. For example, the complementary error function erfc x
and Euler’s Gamma function Γ (x) have the following asymp-
totic expansions at large (positive) x:

erfc x =
e−x2

x
√

π

(
1− 1

2x2
+ ... +

(2n− 1)!!

(−2x2)n + ...

)
,

ln Γ (x) =
(
x− 1

2

)
ln x− x +

ln 2π

2

+

∞∑
n=1

B2n

2n (2n− 1) x2n−1

(here Bk are Bernoulli numbers).
The above series expansions are asymptotic in the following

sense: if we truncate the series and then take the limit of very
large x, then the difference between the two sides of the equation
goes to zero.

It is important that the series be first truncated and then
the limit of large x be taken. Usually, an asymptotic series, if
taken as an infinite series, does not actually converge for any
finite x. This can be seen in the examples above. For instance,
in the asymptotic series for erfc x the n-th term has (2n− 1)!!
in the numerator which grows faster than the n-th power of
any number. The terms of the series decrease at first but then
eventually start to grow, even if we select a large value of x.

The way to use an asymptotic series for a numerical calcu-
lation is to truncate the series well before the terms start to
grow.

Error estimates of the asymptotic series are sometimes diffi-
cult, but the rule of thumb seems to be that the error of the
approximation is usually not greater than the first discarded
term of the series. This can be understood intuitively as follows.
Suppose we truncate the asymptotic series at a point where the
terms still decrease, safely before they start to grow. For exam-
ple, let the terms around the 100-th term be A100, A101, A102,
..., each of these numbers being significantly smaller than the
previous one, and suppose we retain A100 but drop the terms
after it. Then our approximation would have been a lot better
if we retained A101 as well. (This step of the argument is really
an assumption about the behavior of the series; it seems that
this assumption is correct in many practically important cases.)
Therefore the error of the approximation is approximately equal
to A101.

The inherent limitation of the method of asymptotic series is
that for any given x, there will be a certain place in the series
where the term has the minimum absolute value (after that, the
series is unusable), and the error of the approximation cannot
be smaller than that term.

For example, take the above asymptotic series for erfc x. The
logarithm of the absolute value of the n-th term can be esti-
mated using Stirling’s formula for the factorial as

ln
(2n− 1)!!

(2x2)n ≈ n (ln n− 1− 2 ln x) .

This function of n has its minimum at n = x2 where it is equal to
−x2. Therefore the best we can do with this series is to truncate
it before this term. The resulting approximation to erfc x will
have relative precision of order exp

(
−x2

)
. Suppose that x is

large and we need to compute erfc x with P decimal digits of
floating point. Then it follows that we can use the asymptotic
series only if x >

√
P ln 10.

We find that for a given finite x, no matter how large, there is
a maximum precision that can be achieved with the asymptotic
series; if we need more precision, we have to use a different
method.

However, sometimes the function we are evaluating allows
identity transformations that relate f (x) to f (y) with y > x.
For example, the Gamma function satisfies xΓ (x) = Γ (x + 1).
In this case we can transform the function so that we would
need to evaluate it at large enough x for the asymptotic series
to give us enough precision.

4.14 The AGM sequence algo-
rithms

Several algorithms are based on the arithmetic-geometric mean
(AGM) sequence. If one takes two numbers a, b and computes
their arithmetic mean a+b

2
and their geometric mean

√
ab, then

one finds that the two means are generally much closer to each
other than the original numbers. Repeating this process creates
a rapidly converging sequence of pairs.

More formally, one can define the function of two argu-
ments AGM(x, y) as the limit of the sequence ak where ak+1 =
1
2

(ak + bk), bk+1 =
√

akbk, and the initial values are a0 = x,
b0 = y. (The limit of the sequence bk is the same.) This function
is obviously linear, AGM(cx, cy) = cAGM(x, y), so in principle
it is enough to compute AGM(1, x) or arbitrarily select c for
convenience.

Gauss and Legendre knew that the limit of the AGM sequence
is related to the complete elliptic integral,

π

2

1

AGM
(
a,
√

a2 − b2
) =

∫ π
2

0

1√
a2 − b2 (sin x)2

dx.

(Here 0 < b < a.) This integral can be rearranged to provide
some other useful functions. For example, with suitable param-
eters a and b, this integral is equal to π. Thus, one obtains a
fast method of computing π (the Brent-Salamin method).

The AGM sequence is also defined for complex values a, b.
One needs to take a square root

√
ab, which requires a branch

cut to be well-defined. Selecting the natural cut along the nega-
tive real semiaxis (Re (x) < 0, Im (x) = 0), we obtain an AGM
sequence that converges for any initial values x, y with positive
real part.

Let us estimate the convergence rate of the AGM sequence
starting from x, y, following the paper [Brent 1975]. Clearly the
worst case is when the numbers x and y are very different (one
is much larger than another). In this case the numbers ak, bk

become approximately equal after about k = 1
ln 2

ln
∣∣ln x

y

∣∣ iter-

ations (note: Brent’s paper online mistypes this as 1
ln 2

∣∣ln x
y

∣∣).
This is easy to see: if x is much larger than y, then at each step
the ratio r ≡ x

y
is transformed into r′ = 1

2

√
r. When the two

numbers become roughly equal to each other, one needs about
ln n
ln 2

more iterations to make the first n (decimal) digits of ak

and bk coincide, because the relative error ε = 1 − b
a

decays

approximately as εk ≈ 1
8

exp
(
−2k

)
.

Unlike Newton’s iteration, the AGM sequence does not cor-
rect errors, so all numbers need to be computed with full preci-
sion. Actually, slightly more precision is needed to compensate
for accumulated round-off error. Brent (in [Brent 1975]) says
that O (ln ln n) bits of accuracy are lost to round-off error if
there are total of n iterations.

The AGM sequence can be used for fast computations of π,
ln x and arctan x. However, currently the limitations of Yacas

37

internal math make these methods less efficient than simpler
methods based on Taylor series and Newton iterations.

4.15 The binary splitting method

The method of binary splitting is well explained in [Haible et al.
1998]. Some examples are also given in [Gourdon et al. 2001].
This method applies to power series of rational numbers and to
hypergeometric series. Most series for transcendental functions
belong to this category.

If we need to take O (P) terms of the series to obtain P digits
of precision, then ordinary methods would require O

(
P 2
)

arith-
metic operations. (Each term needs O (P) operations because
all coefficients are rational numbers with O (P) digits and we
need to perform a few short multiplications or divisions.) The
binary splitting method requires O (M (P ln P) ln P) operations
instead of the O

(
P 2
)

operations. In other words, we need to
perform long multiplications of integers of size O (P ln P) dig-
its, but we need only O (ln P) such multiplications. The binary
splitting method performs better than the straightforward sum-

mation method if the cost of multiplication is lower than
O(P2)
ln P

.
This is usually true only for large enough precision (at least a
thousand digits).

Thus there are two main limitations of the binary splitting
method:

• As a rule, we can only compute functions of small integer
or rational arguments. For instance, the method works
for the calculation of a Bessel function J0

(
1
3

)
but not for

J0 (π). (As an exception, certain elementary functions can
be computed by the binary splitting method for general
floating-point arguments, with some clever tricks.)

• The method is fast only at high enough precision, when ad-
vanced multiplication methods become more efficient than
simple O

(
P 2
)

methods. The binary splitting method is
actually slower than the simple summation when the long
integer multiplication is M (P) = O

(
P 2
)
.

The main advantages of the method are:

• The method is asymptotically fast and, when applicable,
outperforms most other methods at very high precision.
The best applications of this method are for computing
various constants.

• There is no accumulated round-off error since the method
uses only exact integer arithmetic.

• The sum of a long series can be split into many indepen-
dent partial sums which can be computed in parallel. One
can store exact intermediate results of a partial summa-
tion (a few long integers), which provides straightforward
checkpointing: a failed partial summation can be repeated
without repeating all other parts. One can also resume the
summation later to get more precision and reuse the old
results, instead of starting all over again.

Description of the method

We follow [Haible et al. 1998]. The method applies to any series
of rational numbers of the form

S =

N−1∑
n=0

A (n)

B (n)
,

where A, B are integer coefficients with O (n ln n) bits. Usually
the series is of the particular form

S (0, N) ≡
N−1∑
n=0

a (n)

b (n)

p (0) ...p (n)

q (0) ...q (n)
,

where a, b, p, q are polynomials in n with small integer coeffi-
cients and values that fit into O (ln n) bits.

For example, the Taylor series for arcsin x (when x is a short
rational number) is of this form:

arcsin x = x +
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+ ...

This example is of the above form with the definitions a =
1, b (n) = 2n + 1, p (n) = x2 (2n− 1), q (n) = 2n for n ≥ 1
and p (0) = x, q (0) = 1. (The method will apply only if x
is a rational number with O (ln N) bits in the numerator and
the denominator.) The Taylor series for the hypergeometric
function is also of this form.

The goal is to compute the sum S (0, N) with a chosen num-
ber of terms N . Instead of computing the rational number S
directly, the binary splitting method propose to compute the
following four integers P , Q, B, and T :

P (0, N) ≡ p (0) ...p (N − 1) ,

Q (0, N) ≡ q (0) ...q (N − 1) ,

B (0, N) ≡ b (0) ...b (N − 1) ,

and
T (0, N) ≡ B (0, N) Q (0, N) S (0, N) .

At first sight it seems difficult to compute T , but the computa-
tion is organized recursively. These four integers are computed
for the left (l) half and for the right (r) half of the range [0,
N) and then combined using the obvious recurrence relations
P = PlPr, Q = QlQr, B = BlBr, and the slightly less obvious
relation

T = BrQrTl + BlPlTr.

Here we used the shorthand Pl ≡ P
(
0, N

2
− 1
)
, Pr ≡

P
(

N
2

, N − 1
)

and so on.
Thus the range [0, N) is split in half on each step. At the

base of recursion the four integers P , Q, B, and T are computed
directly. At the end of the calculation (top level of recursion),
one floating-point division is performed to recover S = T

BQ
. It

is clear that the four integers carry the full information needed
to continue the calculation with more terms. So this algorithm
is easy to checkpoint and parallelize.

The integers P , Q, B, and T grow during the calculation
to O (N ln N) bits, and we need to multiply these large inte-
gers. However, there are only O (ln N) steps of recursion and
therefore O (ln N) long multiplications are needed. If the series
converges linearly, we need N = O (P) terms to obtain P digits
of precision. Therefore, the total asymptotic cost of the method
is O (M (P ln P) ln P) operations.

A more general form of the binary splitting technique is also
given in [Haible et al. 1998]. The generalization applies to series
for the form

N−1∑
n=0

a (n)

b (n)

p (0) ...p (n)

q (0) ...q (n)

(
c (0)

d (0)
+ ... +

c (n)

d (n)

)
,

Here a (n), b (n), c (n), d (n), p (n), q (n) are integer-valued func-
tions with “short” values of size O (ln n) bits. For example, the
Ramanujan series for Catalan’s constant is of this form.

The binary splitting technique can also be used for series with
complex integer coefficients, or more generally for coefficients in

38

any finite algebraic extension of integers, e.q. Z[
√

2] (the ring
of numbers of the form p + q

√
2 where p, q are integers). Thus

we may compute the Bessel function J0

(√
3
)

using the binary
splitting method and obtain exact intermediate results of the
form p + q

√
3. But this will still not help compute J0 (π). This

is a genuine limitation of the binary splitting method.

39

Chapter 5

Numerical algorithms II: elementary
functions

5.1 Powers

There are two computational tasks: to compute the power xn

where n is an integer (but x may be a real or a complex number),
and compute xy for arbitrary (real or complex) x, y. We assume
that x, y, n are “big” numbers with P significant digits.

We also assume that the power is positive, or else we need to
perform an additional division to obtain x−y = 1

xy .

If x 6= 0 is known to a relative precision ε, then xy has the
relative precision εy. This means a loss of precision if |y| > 1
and an improvement of precision otherwise.

Integer powers

Integer powers xn with integer n are computed by a fast al-
gorithm of “repeated squaring”. This algorithm is well known
(see, for example, the famous book, The art of computer pro-
gramming [Knuth 1973]).

The algorithm is based on the following trick: if n is even,

say n = 2k, then xn =
(
xk
)2

; and if n is odd, n = 2k + 1,

then xn = x
(
xk
)2

. Thus we can reduce the calculation of xn

to the calculation of xk with k ≤ n
2
, using at most two long

multiplications. This reduction is one step of the algorithm; at
each step n is reduced to at most half. This algorithm stops
when n becomes 1, which happens after m steps where m is the
number of bits in n. So the total number of long multiplications
is at most 2m = 2 ln n

ln 2
. More precisely, it is equal to m plus

the number of nonzero bits in the binary representation of n.
On the average, we shall have 3

2
ln n
ln 2

long multiplications. The
computational cost of the algorithm is therefore O (M (P) ln n).
This should be compared with e.g. the cost of the best method
for ln x which is O (PM (P)).

The outlined procedure is most easily implemented using re-
cursive calls. The depth of recursion is of order ln n and should
be manageable for most real-life applications. The Yacas code
would look like this:

10# power(_x,1)<--x;

20# power(_x,n_IsEven)<-- power(x,n>>1)^2;

30# power(_x,n_IsOdd)<--x*power(x,n>>1)^2;

The function power(m,n) calculates the result of mn for n >
0, m > 0, integer n and integer m. The bit shifts and the
check for an odd number are very fast operations if the internal
representation of big numbers uses base 2.

If we wanted to avoid recursion with its overhead, we would
have to obtain the bits of the number n in reverse order. This is
possible but is somewhat cumbersome unless we store the bits
in an array.

It is easier to implement the non-recursive version of the
squaring algorithm in a slightly different form. Suppose we ob-
tain the bits bi of the number n in the usual order, so that
n = b0 + 2b1 + ... + bm · 2m. Then we can express the power xn

as

xn = xb0
(
x2
)b1

...
(
x2m

)bm

.

In other words, we evaluate x2, x4, ... by repeated squaring,

select those x2k

for which the k-th bit bk of the number n is
nonzero, and multiply all selected powers together.

In the Yacas script form, the algorithm looks like this:

power(x_IsPositiveInteger,n_IsPositiveInteger)<--

[

Local(result, p);

result:=1;

p := x;

While(n != 0)

[// at step k, p = x^(2^k)

if (IsOdd(n))

result := result*p;

p := p*p;

n := n>>1;

];

result;

];

The same algorithm can be used to obtain a power of
an integer modulo another integer, xn mod M , if we replace
the multiplication p*p by a modular multiplication, such as
p:=Mod(p*p,M). Since the remainder modulo m would be com-
puted at each step, the results do not grow beyond M . This al-
lows to efficiently compute even extremely large modular powers
of integers.

Matrix multiplication, or, more generally, multiplication in
any given ring, can be substituted into the algorithm instead of
the normal multiplication. The function IntPowerNum encapsu-
lates the computation of the n-th power of an expression using
the binary squaring algorithm.

The squaring algorithm can be improved a little bit if we are
willing to use recursion or to obtain the bits of n in the reverse
order. (This was suggested in the exercise 4.21 in the book [von
zur Gathen et al. 1999].) Let us represent the power n in base
4 instead of base 2. If qk are the digits of n in base 4, then we
can express

xn = xq0
(
x4
)q1

...
(
x4m

)qm

.

We shall compute this expression from right to left: first we
compute xqm . This is a small power because qm is a digit in
base 4, an integer between 0 and 3. Then we raise it to the 4th

40

power and multiply by xqm−1 . We repeat this process until we
reach the 0th digit of n. At each step we would need to multiply
at most three times. Since each of the qk is between 0 and 3, we
would need to precompute x2 and x3 which requires one extra
multiplication (x2 would be computed anyway). Therefore the
total number of long multiplications is in the worst case 3 ln n

ln 4
+1.

This is about 25% better than the previous worst-case result,
2 ln n

ln 2
. However, the average-case improvement is only about

8% because the average number of multiplications in the base-4
method is 11

4
ln n
ln 4

.
We might then use the base 8 instead of 4 and obtain a further

small improvement. (Using bases other than powers of 2 is less
efficient.) But the small gain in speed probably does not justify
the increased complexity of the algorithm.

Real powers

The squaring algorithm can be used to obtain integer powers
xn in any ring—as long as n is an integer, x can be anything
from a complex number to a matrix. But for a general real
number n, there is no such trick and the power xn has to be
computed through the logarithm and the exponential function,
xn = exp (n ln x). (This also covers the case when x is negative
and the result is a complex number.)

An exceptional case is when n is a rational number with a
very small numerator and denominator, for example, n = 2

3
. In

this case it is faster to take the square of the cubic root of x.
(See the section on the computation of roots below.) Then the
case of negative x should be handled separately. This speedup
is not implemented in Yacas.

Note that the relative precision changes when taking powers.
If x is known to relative precision ε, i.e. x represents a real
number that could be x (1 + ε), then x2 ≈ x (1 + 2ε) has relative
precision 2ε, while

√
x has relative precision ε

2
. So if we square

a number x, we lose one significant bit of x, and when we take
a square root of x, we gain one significant bit.

5.2 Roots

Computation of roots r = n
√

x is efficient when n is a small
integer. The basic approach is to numerically solve the equation
rn = x.

Note that the relative precision is improved after taking a
root with n > 1.

Method 1: bisection

The square root can be computed by using the bisection method,
which works well for integers (if only the integer part of the
square root is needed). The algorithm is described in [Johnson
1987]. The general approach is to scan each bit of the input
number and to see if a certain bit should be set in the resulting
integer. The time is linear in the number of decimals, or log-
arithmic in the input number. The method is very similar in
approach to the repeated squaring method described above for
raising numbers to a power.

For integer N , the following steps are performed:

1. Find the highest bit set, l2, in the number N .

2. 1 <<
(

l2
2

)
is definitely a bit that is set in the result. Start

by setting that bit in the result, u = 1 << l2. It is also the
highest bit set in the result.

3. Now, traverse all the lower bits, one by one. For each lower
bit, starting at lnext = l2 − 1, set v = 1 << lnext. Now,
(u + v)2 = u2 +2uv + v2. If (u + v)2 ≤ N , then the bit set

in v should also be set in the result, u, otherwise that bit
should be cleared.

4. Set lnext = lnext − 1, and repeat until all bits are tested,
and lnext = 0 and return the result found.

The intermediate results, u2, v2 and 2uv can be maintained
easily too, due to the nature of the numbers involved (v having
only one bit set, and it being known which bit that is).

For floating point numbers, first the required number of dec-
imals p after the decimal point is determined. Then the input
number N is multiplied by a power of 10 until it has 2p decimal.
Then the integer square root calculation is performed, and the
resulting number has p digits of precision.

Below is some Yacas script code to perform the calculation
for integers.

//sqrt(1) = 1, sqrt(0) = 0

10 # BisectSqrt(0) <-- 0;

10 # BisectSqrt(1) <-- 1;

20 # BisectSqrt(N_IsPositiveInteger) <--

[

Local(l2,u,v,u2,v2,uv2,n);

// Find highest set bit, l2

u := N;

l2 := 0;

While (u!=0)

[

u:=u>>1;

l2++;

];

l2--;

// 1<<(l2/2) now would be a good under estimate

// for the square root. 1<<(l2/2) is definitely

// set in the result. Also it is the highest

// set bit.

l2 := l2>>1;

// initialize u and u2 (u2==u^2).

u := 1 << l2;

u2 := u << l2;

// Now for each lower bit:

While(l2 != 0)

[

l2--;

// Get that bit in v, and v2 == v^2.

v := 1<<l2;

v2 := v<<l2;

// uv2 == 2*u*v, where 2==1<<1, and

// v==1<<l2, thus 2*u*v ==

// (1<<1)*u*(1<<l2) == u<<(l2+1)

uv2 := u<<(l2 + 1);

// n = (u+v)^2 = u^2 + 2*u*v + v^2

// = u2+uv2+v2

n := u2 + uv2 + v2;

// if n (possible new best estimate for

// sqrt(N)^2 is smaller than N, then the

// bit l2 is set in the result, and

// add v to u.

if(n <= N)

41

[

u := u+v; // u <- u+v

u2 := n; // u^2 <- u^2 + 2*u*v + v^2

];

l2--;

];

u; // return result, accumulated in u.

];

BisectSqrt(N) computes the integer part of
√

N for integer N .
(If we need to obtain more digits, we should first multiply N by
a suitable power of 2.) The algorithm works for floats as well as
for integers.

The bisection algorithm uses only additions and bit shifting
operations. Suppose the integer N has P decimal digits, then
it has n = P ln 10

ln 2
bits. For each bit, the number of additions is

about 4. Since the cost of an addition is linear in the number
of bits, the total complexity of the bisection method is roughly
4n2 = O

(
P 2
)
.

Method 2: Newton’s iteration

An efficient method for computing the square root is found by
using Newton’s iteration for the equation r2−x = 0. The initial
value of r can be obtained by bit counting and shifting, as in
the bisection method. The iteration formula is

r′ =
r

2
+

x

2r
.

The convergence is quadratic, so we double the number of cor-
rect digits at each step. Therefore, if the initial guess is accurate
to one bit, the number of steps n needed to obtain P decimal
digits is

n =
ln P ln 10

ln 2

ln 2
= O (ln P) .

We need to perform one long division at each step; a long di-
vision costs O (M (P)). Therefore the total complexity of this
algorithm is O (M (P) ln P). This is better than the O

(
P 2
)

algorithm if the cost of multiplication is below O
(
P 2
)
.

In most implementations of arbitrary-precision arithmetic,
the time to perform a long division is several times that of a long
multiplication. Therefore it makes sense to use a method that
avoids divisions. One variant of Newton’s method is to solve
the equation 1

r2 = x. The solution of this equation r = 1√
x

is
the limit of the iteration

r′ = r + r
1− r2x

2

that does not require any divisions (but instead requires three
multiplications). The final multiplication rx completes the cal-
culation of the square root.

As usual with Newton’s method, all errors are automatically
corrected, so the working precision can be gradually increased
until the last iteration. The full precision of P digits is used only
at the last iteration; the last-but-one iteration uses P

2
digits and

so on.
An optimization trick is to combine the multiplication by x

with the last iteration. Then computations can be organized
in a special way to avoid the last full-precision multiplication.
(This is described in [Karp et al. 1997] where the same trick is
also applied to Newton’s iteration for division.)

The idea is the following: let r be the P -digit approximation
to 1√

x
at the beginning of the last iteration. (In this notation,

2P is the precision of the final result, so x is also known to
about 2P digits.) The unmodified procedure would have run as
follows:

r′ = r + r
1− r2x

2
,

s = xr′.

Then s would have been the final result,
√

x to 2P digits. We
would need one multiplication M (P) with 2P -digit result to
compute r2, then one M (2P) to compute r2x (the product of a
P -digit r2 and a 2P -digit x). Then we subtract this from 1 and
lose P digits since r was already a P -digit approximation to 1√

x
.

The value y ≡ 1 − r2x is of order 10−P and has P significant
digits. So the third multiplication, ry, is only M (P). The
fourth multiplication sx is again M (2P). The total cost is then
2M (P) + 2M (2P).

Now consider Newton’s iteration for s ≈
√

x,

s′ = s +
1

s

1− s2x

2
.

The only reason we are trying to avoid it is the division by s.
However, after all but the last iterations for r we already have
a P -digit approximation for 1

s
, which is r. Therefore we can

simply define s = rx and perform the last iteration for s, taking
1
s
≈ r. This is slightly inexact, but the error is higher-order

than the precision of the final result, because Newton’s method
erases any accumulated errors. So this will give us 2P digits of
s without divisions, and lower the total computational cost.

Consider the cost of the last iteration of this combined
method. First, we compute s = xr, but since we only need
P correct digits of s, we can use only P digits of x, so this
costs us M (P). Then we compute s2x which, as before, costs
M (P) + M (2P), and then we compute r

(
1− s2x

)
which costs

only M (P). The total cost is therefore 3M (P)+M (2P), so we
have traded one multiplication with 2P digits for one multiplica-
tion with P digits. Since the time of the last iteration dominates
the total computing time, this is a significant cost savings. For
example, if the multiplication is quadratic, M (P) = O

(
P 2
)
,

then this saves about 30% of total execution time; for linear
multiplication, the savings is about 16.67%.

These optimizations do not change the asymptotic complexity
of the method, although they do reduce the constant in front of
O ().

Method 3: argument reduction and inter-
polation

Before using the bisection or Newton’s method, we might apply
some argument reduction to speed up the convergence of the
iterations and to simplify finding the first approximation.

Suppose we need to find
√

x. Choose an integer n such that
1
4

< x′ ≡ 4−nx ≤ 1. The value of n is easily found from bit
counting: if b is the bit count of x, then

n =
⌊

b + 1

2

⌋
.

We find √
x = 2n

√
x′.

The precision of x′ is the same as that of x since 2n is an exact
number.

To compute
√

x′, we use Newton’s method with the initial
value x′0 obtained by interpolation of the function

√
x on the

interval [1
4
,1]. A suitable interpolation function might be taken

as simply 2x+1
3

or more precisely

√
x ≈ 1

90

(
−28x2 + 95x + 23

)
.

By using a particular interpolation function, we can guarantee
a certain number of precise bits at every iteration.

42

This may save a few iterations, at the small expense of eval-
uating the interpolation function once at the beginning. How-
ever, in computing with high precision the initial iterations are
very fast and this argument reduction does not give a significant
speed gain. But the gain may be important at low precisions,
and this technique is sometimes used in microprocessors.

Method 4: Halley’s iteration

A separate function IntNthRoot is provided to compute the inte-
ger part of s

√
n for integer n and s. For a given s, it evaluates the

integer part of s
√

n using only integer arithmetic with integers

of size n1+ 1
s . This can be done by Halley’s iteration method,

solving the equation xs = n. For this function, the Halley it-

eration sequence is monotonic. The initial guess is x0 = 2
b(n)

s

where b (n) is the number of bits in n obtained by bit counting
or using the integer logarithm function. It is clear that the ini-
tial guess is accurate to within a factor of 2. Since the relative
error is squared at every iteration, we need as many iteration
steps as bits in s

√
n.

Since we only need the integer part of the root, it is enough
to use integer division in the Halley iteration. The sequence xk

will monotonically approximate the number s
√

n from below if
we start from an initial guess that is less than the exact value.
(We start from below so that we have to deal with smaller in-
tegers rather than with larger integers.) If n = ps, then after
enough iterations the floating-point value of xk would be slightly
less than p; our value is the integer part of xk. Therefore, at each
step we check whether 1 + xk is a solution of xs = n, in which
case we are done; and we also check whether (1 + xk)s > n, in
which case the integer part of the root is xk. To speed up the
Halley iteration in the worst case when ss > n, it is combined
with bisection. The root bracket interval x1 < x < x2 is main-
tained and the next iteration xk+1 is assigned to the midpoint
of the interval if Halley’s formula does not give sufficiently rapid
convergence. The initial root bracket interval can be taken as
x0, 2x0.

If s is very large (ss > n), the convergence of both Newton’s
and Halley’s iterations is almost linear until the final few itera-
tions. Therefore it is faster to evaluate the floating-point power
for large b using the exponential and the logarithm.

Method 5: higher-order iterations

A higher-order generalization of Newton’s iteration for inverse
square root 1√

x
is:

r′ = r +
r

2

(
1− r2x

)
+ 3

r

8

(
1− r2x

)2
+ ...

The more terms of the series we add, the higher is the con-

vergence rate. This is the Taylor series for (1− y)−
1
2 where

y ≡ 1 − r2x. If we take the terms up to yn−1, the precision at
the next iteration will be multiplied by n. The usual second-
order iteration (our “method 2”) corresponds to n = 2.

The trick of combining the last iteration with the final mul-
tiplication by x can be also used with all higher-order schemes.

Consider the cost of one iteration of n-th order. Let the initial
precision of r be P ; then the final precision is kP and we use up
to nP digits of x. First we compute y ≡ 1 − r2x to P (n− 1)
digits, this costs M (P) for r2 and then M (Pn) for r2x. The
value of y is of order 10−P and it has P (n− 1) digits, so we only
need to use that many digits to multiply it by r, and ry now
costs us M (P (n− 1)). To compute yk (here 2 ≤ k ≤ n − 1),
we need M (P (n− k)) digits of y; since we need all consecutive
powers of y, it is best to compute the powers one after another,

lowering the precision on the way. The cost of computing ryky
after having computed ryk is therefore M (P (n− k − 1)). The
total cost of the iteration comes to

2M (P) + M (2P) + ... + M ((n− 1) P) + M (nP) .

From the general considerations in the previous chapter (see
the section on Newton’s method) it follows that the optimal
order is n = 2 and that higher-order schemes are slower in this
case.

Which method to use

The bisection method (1) for square roots is probably the fastest
for small integers or low-precision floats. Argument reduction
and/or interpolation (3) can be used to simplify the iterative
algorithm or to make it more robust.

Newton’s method (2) is best for all other cases: large precision
and/or roots other than square roots.

5.3 Logarithm

The basic computational task is to obtain the logarithm of a
real number. However, sometimes only the integer part of the
logarithm is needed and the logarithm is taken with respect to
an integer base. For example, we might need to evaluate the
integer part of ln n

ln 2
where n is a large integer, to find how many

bits are needed to hold n. Computing this “integer logarithm”
is a much easier task than computing the logarithm in floating-
point.

Logarithms of complex numbers can be reduced to elementary
functions of real numbers, for example:

ln (a + ıb) =
1

2
ln
(
a2 + b2

)
+ ı arctan

b

a
.

For a negative real number x < 0, we have

ln x = ln |x|+ ıπ.

This assumes, of course, an appropriate branch cut for the com-
plex logarithm. A natural choice is to cut along the negative
real semiaxis, Im (z) = 0, Re (z) < 0.

Integer logarithm

The “integer logarithm”, defined as the integer part of ln x
ln b

,
where x and b are integers, is computed using a special rou-
tine IntLog(x,b) with purely integer math. When both argu-
ments are integers and only the integer part of the logarithm
is needed, the integer logarithm is much faster than evaluating
the full floating-point logarithm and truncating the result.

The basic algorithm consists of (integer-) dividing x by b re-
peatedly until x becomes 0 and counting the necessary number
of divisions. If x has P digits and b and P are small numbers,
then division is linear in P and the total number of divisions is
O (P). Therefore this algorithm costs O

(
P 2
)

operations.
A speed-up for large x is achieved by first comparing x with

b, then with b2, b4, etc., without performing any divisions. We
perform n such steps until the factor b2n

is larger than x. At this
point, x is divided by the previous power of b and the remaining
value is iteratively compared with and divided by successively
smaller powers of b. The number of squarings needed to com-
pute b2n

is logarithmic in P . However, the last few of these
multiplications are long multiplications with numbers of length
P
4
, P

2
, P digits. These multiplications take the time O (M (P)).

Then we need to perform another long division and a series of

43

progressively shorter divisions. The total cost is still O (M (P)).
For large P , the cost of multiplication M (P) is less than O

(
P 2
)

and therefore this method is preferable.
There is one special case, the binary (base 2) logarithm. Since

the internal representation of floating-point numbers is usually
in binary, the integer part of the binary logarithm can be usually
implemented as a constant-time operation.

Real logarithms

There are many methods to compute the logarithm of a real
number. Here we collect these methods and analyze them.

The logarithm satisfies ln 1
x

= − ln x. Therefore we need to
consider only x > 1, or alternatively, only 0 < x < 1.

Note that the relative precision for x translates into absolute
precision for ln x. This is because ln x (1 + ε) ≈ ln x+ε for small
ε. Therefore, the relative precision of the result is at best ε

ln x
.

So to obtain P decimal digits of ln x, we need to know P− ln|ln x|
ln 10

digits of x. This is better than the relative precision of x if x > e
but worse if x ≈ 1.

Method 1: Taylor series

The logarithm function ln x for general (real or complex) x such
that |x− 1| < 1 can be computed using the Taylor series,

ln (1 + z) = z − z2

2
+

z3

3
− ...

The series converges quite slowly unless |x| is small. For real
x < 1, the series is monotonic,

ln (1− z) = −z − z2

2
− z3

3
− ...,

and the round-off error is somewhat smaller in that case (but not
very much smaller, because the Taylor series method is normally
used only for very small x).

If x > 1, then we can compute− ln 1
x

instead of ln x. However,
the series converges very slowly if x is close to 0 or to 2.

Here is an estimate of the necessary number of terms to
achieve a (relative) precision of P decimal digits when comput-
ing ln (1 + x) for small real x. Suppose that x is of order 10−N ,
where N ≥ 1. The error after keeping n terms is not greater

than the first discarded term, xn+1

n+1
. The magnitude of the sum

is approximately x, so the relative error is xn

n+1
and this should

be smaller than 10−P . We obtain a sufficient condition n > P
N

.
All calculations need to be performed with P digits of preci-

sion. The “rectangular” scheme for evaluating n terms of the
Taylor series needs about 2

√
n long multiplications. Therefore

the cost of this calculation is 2
√

P
N

M (P).
When P is very large (so that a fast multiplication can be

used) and x is a small rational number, then the binary splitting
technique can be used to compute the Taylor series. In this case
the cost is O (M (P) ln P).

Note that we need to know P + N digits of 1 + x to be able
to extract P digits of ln (1 + x). The N extra digits will be lost
when we subtract 1 from 1 + x.

Method 2: square roots + Taylor series

The method of the Taylor series allows to compute ln x effi-
ciently when x − 1 = 10−N is very close to 1 (i.e. for large
N). For other values of x the series converges very slowly. We
can transform the argument to improve the performance of the
Taylor series.

One way is to take several square roots, reducing x to x2−k

until x becomes close to 1. Then we can compute ln x2−k

using

the Taylor series and use the identity ln x = 2k ln x2−k

.
The number of times to take the square root can be chosen

to minimize the total computational cost. Each square root
operation takes the time equivalent to a fixed number c of long
multiplications. (According to the estimate of [Brent 1975], c ≈
13
2

.) Suppose x is initially of order 10L where L > 0. Then we
can take the square root k1 times and reduce x to about 1.33.
Here we can take k1 ≈ ln L

ln 2
+ 3. After that, we can take the

square root k2 times and reduce x to 1+10−N with N ≥ 1. For
this we need k2 ≈ 1+N ln 10

ln 2
square roots. The cost of all square

roots is c (k1 + k2) long multiplications. Now we can use the

Taylor series and obtain ln x2−k1−k2
in 2

√
P
N

multiplications.
We can choose N to minimize the total cost for a given L.

Method 3: inverse exponential

The method is to solve the equation exp (x)− a = 0 to find x =
ln a. We can use either the quadratically convergent Newton
iteration,

x′ = x− 1 +
a

exp (x)
,

or the cubically convergent Halley iteration,

x′ = x− 2
exp (x)− a

exp (x) + a
.

Each iteration requires one evaluation of exp (x) and one long
division. Newton’s iteration can be rewritten through exp (−x)
but this does not really avoid a long division: exp (−x) for pos-
itive x is usually computed as 1

exp(x)
because other methods are

much less efficient. Therefore the Halley iteration is preferable.
The initial value for x can be found by bit counting on the

number a. If m is the “bit count” of a, i.e. m is an integer such
that 1

2
≤ a · 2−m < 1, then the first approximation to ln a is

m ln 2. (Here we can use a very rough approximation to ln 2, for
example, 2

3
.)

The initial value found in this fashion will be correct to about
one bit. The number of digits triples at each Halley iteration, so
the result will have about 3k correct bits after k iterations (this
disregards round-off error). Therefore the required number of
iterations for P decimal digits is 1

ln 3
ln P ln 2

ln 10
.

This method is currently faster than other methods (with
internal math) and so it is implemented in the routine
Internal’LnNum.

This method can be generalized to higher orders. Let y ≡
1 − a exp (−x0), where x0 is a good approximation to ln a so y
is small. Then ln a = x0 + ln (1− y) and we can expand in y to
obtain

ln a = x0 − y − y2

2
− y3

3
− ...

By truncating this sum after k-th term we obtain a (k − 1)-th
order method that multiplies the number of correct digits by
k + 1 after each iteration.

The optimal number of terms to take depends on the speed
of the implementation of exp (x).

Method 4: AGM

A fast algorithm based on the AGM sequence was given by
Salamin (see [Brent 1975]). The formula is based on an asymp-
totic relation,

ln x = πx
1 + 4x−2

(
1− 1

ln x

)
+ O

(
x−4
)

2AGM(x, 4)
.

44

If x is large enough, the numerator can be replaced by 1. “Large
enough” for a desired precision of P decimal digits means that
4x−2 < 10−P . The AGM algorithm gives P digits only for such
large values of x, unlike the Taylor series which is only good for
x close to 1.

The required number of AGM iterations is approximately
2 ln P

ln 2
. For smaller values of x (but x > 1), one can either raise

x to a large integer power r and then compute 1
r

ln xr (this is
quick only if x is itself an integer or a rational), or multiply x
by a large integer power of 2 and compute ln 2sx− s ln 2 (this is
better for floating-point x). Here the required powers are

r =
ln 10P · 4

2 ln x
,

s = P
ln 10

2 ln 2
+ 1− ln x

ln 2
.

The values of these parameters can be found quickly by using
the integer logarithm procedure IntLog, while constant values
such as ln 10

ln 2
can be simply approximated by rational numbers

because r and s do not need to be very precise (but they do need
to be large enough). For the second calculation, ln 2sx− s ln 2,
we must precompute ln 2 to the same precision of P digits. Also,
the subtraction of a large number s ln 2 leads to a certain loss of
precision, namely, about ln s

ln 10
decimal digits are lost, therefore

the operating precision must be increased by this number of
digits. (The quantity ln s

ln 10
is computed, of course, by the integer

logarithm procedure.)
If x < 1, then (− ln 1

x
) is computed.

Finally, there is a special case when x is very close to 1, where
the Taylor series converges quickly but the AGM algorithm re-
quires to multiply x by a large power of 2 and then subtract
two almost equal numbers, leading to a great waste of precision.
Suppose 1 < x < 1 + 10−M , where M is large (say of order P).
The Taylor series for ln (1 + ε) needs about N = −P ln 10

ln ε
= P

M

terms. If we evaluate the Taylor series using the rectangular
scheme, we need 2

√
N multiplications and

√
N units of storage.

On the other hand, the main slow operation for the AGM se-
quence is the geometric mean

√
ab. If

√
ab takes an equivalent

of c multiplications (Brent’s estimate is c = 13
2

but it may be
more in practice), then the AGM sequence requires 2c ln P

ln 2
mul-

tiplications. Therefore the Taylor series method is more efficient
for

M >
1

c2
P
(

ln 2

ln P

)2

.

In this case it requires at most c ln P
ln 2

units of storage and 2c ln P
ln 2

multiplications.
For larger x > 1+10−M , the AGM method is more efficient. It

is necessary to increase the working precision to P +M ln 2
ln 10

but
this does not decrease the asymptotic speed of the algorithm. To
compute ln x with P digits of precision for any x, only O (ln P)
long multiplications are required.

Method 5: argument reduction + Taylor se-
ries

Here is a straightforward method that reduces ln x for large
x > 2 to ln (1 + δ) with a small δ; now the logarithm can be
quickly computed using the Taylor series.

The simplest version is this: for integer m, we have the iden-
tity ln x = m + ln xe−m. Assuming that e ≡ exp (1) is precom-
puted, we can find the smallest integer m for which x ≤ em

by computing the integer powers of e and comparing with x.
(If x is large, we do not really have to go through all integer
m: instead we can estimate m by bit counting on x and start
from em.) Once we found m, we can use the Taylor series on

1 − δ ≡ xe−m since we have found the smallest possible m, so
0 ≤ δ < 1− 1

e
.

A refinement of this method requires to precompute b =
exp
(
2−k
)

for some fixed integer k ≥ 1. (This can be done
efficiently using the squaring trick for the exponentials.) First
we find the smallest power m of b which is above x. To do
this, we compute successive powers of b and find the first inte-
ger m such that x ≤ bm = exp

(
m · 2−k

)
. When we find such

m, we define 1 − δ ≡ xb−m and then δ will be small, because
0 < δ < 1 − 1

b
≈ 2−k (the latter approximation is good if k is

large). We compute ln (1− δ) using the Taylor series and finally
find ln x = m · 2k + ln (1− δ).

For smaller δ, the Taylor series of ln (1− δ) is more efficient.
Therefore, we have a trade-off between having to perform more
multiplications to find m, and having a faster convergence of
the Taylor series.

Method 6: transformed Taylor series

We can use an alternative Taylor series for the logarithm that
converges for all x,

ln (a + z) = ln a + 2

∞∑
k=0

1

2k + 1

(
z

2a + z

)2k+1

.

This series is obtained from the series for arctanh x and the
identity

2arctanh x = ln
1 + x

1− x
.

This series converges for all z such that Re (a + z) > 0 if
a > 0. The convergence rate is, however, the same as for the
original Taylor series. In other words, it converges slowly un-
less z

2a+z
is small. The parameter a can be chosen to optimize

the convergence; however, ln a should be either precomputed or
easily computable for this method to be efficient.

For instance, if x > 1, we can choose a = 2k for an integer
k ≥ 1, such that 2k−1 ≤ x < 2k = a. (In other words, k is the
bit count of x.) In that case, we represent x = a − z and we
find that the expansion parameter z

2a−z
< 1

3
. So a certain rate

of convergence is guaranteed, and it is enough to take a fixed
number of terms, about P ln 10

ln 3
, to obtain P decimal digits of

ln x for any x. (We should also precompute ln 2 for this scheme
to work.)

If 0 < x < 1, we can compute − ln 1
x
.

This method works robustly but is slower than the Taylor
series with some kind of argument reduction. With the “rectan-
gular” method of summation, the total cost is O

(√
PM (P)

)
.

Method 7: binary reduction

This method is based on the binary splitting technique and is
described in [Haible et al. 1998] with a reference to [Brent 1976].

The method shall compute ln (1 + x) for real x such that |x| <
1
2
. For other x, some sort of argument reduction needs to be

applied. (So this method is a replacement for the Taylor series
that is asymptotically faster at very high precision.)

The main idea is to use the property

ln
(
1 + z · 2−k

)
= z · 2−k + O

(
2−2k

)
for integer k ≥ 1 and real z such that |z| ≤ 1. This property
allows to find the first 2k binary digits of ln

(
1 + z · 2−k

)
by

inspection: these digits are the first k nonzero digits of z. Then
we can perform a very quick computation of exp

(
−m · 2−k

)
for

integer k, m (evaluated using the binary splitting of the Taylor
series) and reduce z by at least the factor 2k.

45

More formally, we can write the method as a loop over k,
starting with k = 1 and stopping when 2−k < 10−P is below
the required precision. At the beginning of the loop we have
y = 0, z = x, k = 1 and |z| < 1

2
. The loop invariants are

(1 + z) exp (y) which is always equal to the original number 1+x,
and the condition |z| < 2−k. If we construct this loop, then it is
clear that at the end of the loop 1+ z will become 1 to required
precision and therefore y will be equal to ln (1 + x).

The body of the loop consists of the following steps:

1. Separate the first k significant digits of z:

f = 2−2k
⌊
22kz

⌋
.

Now f is a good approximation for ln (1 + z).

2. Compute exp (−f) using the binary splitting technique (f
is a rational number with the denominator 22k and nu-
merator at most 2k). It is in fact sufficient to compute
1− exp (−f) which does not need all digits.

3. Set y = y + f and z = (1 + z) exp (−f)− 1.

The total number of steps in the loop is at most
ln P ln 10

ln 2
ln 2

.
Each step requires O (M (P) ln P) operations because the ex-
ponential exp (−f) is taken at a rational arguments f and can
be computed using the binary splitting technique. (Toward the
end of the loop, the number of significant digits of f grows, but
the number of digits we need to obtain is decreased. At the last
iteration, f contains about half of the digits of x but computing
exp (−f) requires only one term of the Taylor series.) Therefore
the total cost is O

(
M (P) (ln P)2

)
.

Essentially the same method can be used to evaluate a com-
plex logarithm, ln (a + ıb). It is slower but the asymptotic cost
is the same.

Method 8: continued fraction

There is a continued fraction representation of the logarithm:

ln (1 + x) =
x

1 + x
2+ x

3+ 4x

4+ 4x

5+ 9x
6+...

.

This fraction converges for all x, although the speed of conver-
gence varies with the magnitude of x.

This method does not seem to provide a computational ad-
vantage compared with the other methods.

Method 9: bisection

A simple bisection algorithm for ln x
ln 2

(the base 2 logarithm) with
real x is described in [Johnson 1987].

First, we need to divide x by a certain power of 2 to reduce
x to y in the interval 1 ≤ y < 2. We can use the bit count
m = BitCount (x) to find an integer m such that 1

2
≤ x·2−m < 1

and take y = x · 21−m. Then ln x
ln 2

= ln y
ln 2

+ m− 1.

Now we shall find the bits in the binary representation of ln y
ln 2

,

one by one. Given a real y such that 1 ≤ y < 2, the value ln y
ln 2

is between 0 and 1. Now,

ln y

ln 2
= 2−1 ln y2

ln 2
.

The leading bit of this value is 1 if y2 ≥ 2 and 0 otherwise.
Therefore we need to compute y′ = y2 using a long P -digit

multiplication and compare it with 2. If y′ ≥ 2 we set y = y′

2
,

otherwise we set y = y′; then we obtain 1 ≤ y < 2 again and
repeat the process to extract the next bit of ln y

ln 2
.

The process is finished either when the required number of
bits of ln y

ln 2
is found, or when the precision of the argument

is exhausted, whichever occurs first. Note that each iteration
requires a long multiplication (squaring) of a number, and each
squaring loses 1 bit of relative precision, so after k iterations
the number of precise bits of y would be P − k. Therefore we
cannot have more iterations than P (the number of precise bits
in the original value of x). The total cost is O (PM (P)).

The squaring at each iteration needs to be performed not with
all digits, but with the number of precise digits left in the current
value of y. This does not reduce the asymptotic complexity; it
remains O (PM (P)).

Comparing this method with the Taylor series, we find that
the only advantage of this method is simplicity. The Taylor se-
ries requires about P terms, with one long multiplication and
one short division per term, while the bisection method does
not need any short divisions. However, the rectangular method
of Taylor summation cuts the time down to O

(√
P
)

long multi-
plications, at a cost of some storage and bookkeeping overhead.
Therefore, the bisection method may give an advantage only at
very low precisions. (This is why it is sometimes used in micro-
processors.) The similar method for the exponential function
requires a square root at every iteration and is never competi-
tive with the Taylor series.

Which method to use

This remains to be seen.

5.4 Exponential

There are many methods to compute the exponential of a real
number. Here we collect these methods and analyze them.

The exponential function satisfies exp (−x) = 1
exp(x)

. There-
fore we need to consider only x > 0.

Note that the absolute precision for x translates into rel-
ative precision for exp (x). This is because exp (x + ε) ≈
exp (x) (1 + ε) for small ε. Therefore, to obtain P decimal digits
of exp (x) we need to know x with absolute precision of at least

10−P , that is, we need to know P + ln|x|
ln 10

digits of x. Thus, the
relative precision becomes worse after taking the exponential if
x > 1 but improves if x is very small.

Method 1: Taylor series

The exponential function is computed using its Taylor series,

exp (x) = 1 + x +
x2

2!
+ ...

This series converges for all (complex) x, but if |x| is large, or
if x is negative, then the series converges slowly and/or gives a
large round-off error. So one should use this Taylor series only
when x is small.

If x is sufficiently small, e.g. |x| < 10−M and M > ln P
ln 10

, then
it is enough to take about P

M
terms in the Taylor series. If x is

of order 1, one needs about P ln 10
ln P

terms.

If x = p
q

is a small rational number, and if a fast multiplica-
tion is available, then the binary splitting technique should be
used to evaluate the Taylor series. The computational cost of
that is O (M (P ln P) ln P).

46

Method 2: squaring + Taylor series

A speed-up trick used for large x is to divide the argument by
some power of 2 and then square the result several times, i.e.

exp (x) =
(
exp
(
2−kx

))2k

,

where k is chosen sufficiently large so that the Taylor series
converges quickly at 2−kx [Smith 1985]. The threshold value
for x can be obtained through MathExpThreshold(), and set
through SetMathExpThreshold(threshold) in stdfuncs.

A modification of the squaring reduction allows to signif-
icantly reduce the round-off error [Brent 1978]. Instead of

exp (x) =
(
exp
(

x
2

))2
, we use the identity

exp (x)− 1 =
(
exp
(

x

2

)
− 1
)(

exp
(

x

2

)
+ 1
)

and reduce exp (x)−1 directly to exp
(

x
2

)
−1. If y = exp

(
x
2

)
−1,

then exp (x)− 1 = 2y + y2.

Method 3: inverse logarithm

An alternative way to compute x = exp (a) if a fast logarithm
routine is available would be to solve the equation ln x = a.
(This might be better at very large precision where the AGM
method for the logarithm is asymptotically the fastest.)

Newton’s method gives the iteration

x′ = x (a + 1− ln x) .

The iteration converges quadratically to exp (a) if the initial
value of x is 0 < x < exp (a + 1).

A cubically convergent formula is obtained if we replace ln x =
a by an equivalent equation

ln x− a

ln x− a− 2
= 0.

For this equation, Newton’s method gives the iteration

x′ = x
1 + (a + 1− ln x)2

2
.

This iteration converges for initial values 0 < x < exp (a + 2)
with a cubic convergence rate and requires only one more multi-
plication, compared with Newton’s method for ln x = a. A good
initial guess can be found by raising 2 to the integer part of a

ln 2

(the value ln 2 can be approximated from above by a suitable
rational number, e.g. 7050

10171
).

This cubically convergent iteration seems to follow from a
good equivalent equation that we guessed. But it turns out that
it can be generalized to higher orders. Let y ≡ a− ln x0 where
x0 is an approximation to exp (a); if it is a good approximation,
then y is small. Then exp (a) = x0 exp (y). Expanding in y, we
obtain

exp (a) = x0

(
1 + y +

y2

2!
+

y3

3!
+ ...

)
,

and if we truncate the series after k-th term, the new approxi-
mation will have k times the number of correct digits in x0. It
is easy to see that the above cubic iteration is a particular case
with k = 3.

The optimal number of terms to take depends on the speed
of the implementation of ln x.

Method 4: linear reduction + Taylor series

In this method we reduce the argument x by subtracting an
integer. Suppose x > 1, then take n = bxc where n is an
integer, so that 0 ≤ x − n < 1. Then we can compute
exp (x) = exp (n) exp (x− n) by using the Taylor series on the
small number x − n. The integer power en is found from a
precomputed value of e.

A refinement of this method is to subtract not only the integer
part of x, but also the first few binary digits. We fix an integer
k ≥ 1 and precompute b ≡ exp

(
2−k
)
. Then we find the integer

m such that 0 ≤ x − m · 2−k < 2−k. (The rational number
m · 2−k contains the integer part of x and the first k bits of
x after the binary point.) Then we compute exp

(
x−m · 2−k

)
using the Taylor series and exp

(
m · 2−k

)
= bm by the integer

powering algorithm from the precomputed value of b.
The parameter k should be chosen to minimize the computa-

tional effort.

Method 5: binary rediction

This method is based on the binary splitting technique and is
described in [Haible et al. 1998] with a reference to [Brent 1976].
The idea is to reduce the computation of exp (x) to the compu-
tation of exp (rk) for some rational numbers r0, r1, r2, ...

Take the binary decomposition of x of the following form,

x = x0 +

N∑
k=0

uk · 2−2k

,

where x0 and uk are integers such that |uk| < 22k−1
. Then define

rk = uk · 2−2k

. Note that all rk are rational numbers such that
|rk| < 2−2k−1

. The exponentials exp (rk) are computed using
the binary splitting on the Taylor series. Finally,

exp (x) = exp (x0) exp (r0) exp (r1)

The cost of this method is O (M (P ln P) ln P) operations.
Essentially the same method can be used to compute the com-

plex exponential, exp (a + ıb). This is slower but the asymptotic
cost is the same.

Method 6: continued fraction

There is a continued fraction representation of the exponential
function:

exp (−x) = 1− x

1 + x
2− x

3+ x
2− x

5+ x
2−...

.

This fraction converges for all x, although the speed of conver-
gence varies with the magnitude of x.

This method does not seem to provide a computational ad-
vantage compared with the other methods.

Which method to use

This remains to be seen.

5.5 Calculation of π

In Yacas, the constant π is computed by the library routine
Internal’Pi() which uses the internal routine MathPi to com-
pute the value to current precision Builtin’Precision’Set().
The result is stored in a global variable as a list of the form

47

{precision, value} where precision is the number of digits
of π that have already been found and value is the multiple-
precision value. This is done to avoid recalculating π if a precise
enough value for it has already been found.

Efficient iterative algorithms for computing π with arbitrary
precision have been recently developed by Brent, Salamin, Bor-
wein and others. However, limitations of the current multiple-
precision implementation in Yacas (compiled with the “inter-
nal” math option) make these advanced algorithms run slower
because they require many more arbitrary-precision multiplica-
tions at each iteration.

The file examples/pi.ys implements several different algo-
rithms that duplicate the functionality of Internal’Pi(). See
[Gourdon et al. 2001] for more details of computations of π and
generalizations of Newton-Raphson iteration.

Method 1: solve sin x = 0

PiMethod0(), PiMethod1(), PiMethod2() are all based on a gen-
eralized Newton-Raphson method of solving equations.

Since π is a solution of sin x = 0, one may start sufficiently
close, e.g. at x0 = 3.14159265 and iterate x′ = x − tan x. In
fact it is faster to iterate x′ = x + sin x which solves a different
equation for π. PiMethod0() is the straightforward implemen-
tation of the latter iteration. A significant speed improvement
is achieved by doing calculations at each iteration only with the
precision of the root that we expect to get from that iteration.
Any imprecision introduced by round-off will be automatically
corrected at the next iteration.

If at some iteration x = π + ε for small ε, then from the
Taylor expansion of sin x it follows that the value x′ at the next
iteration will differ from π by O

(
ε3
)
. Therefore, the number of

correct digits triples at each iteration. If we know the number
of correct digits of π in the initial approximation, we can decide
in advance how many iterations to compute and what precision
to use at each iteration.

The final speed-up in PiMethod0() is to avoid computing at
unnecessarily high precision. This may happen if, for example,
we need to evaluate 200 digits of π starting with 20 correct
digits. After 2 iterations we would be calculating with 180 digits;
the next iteration would have given us 540 digits but we only
need 200, so the third iteration would be wasteful. This can be
avoided by first computing π to just over 1/3 of the required
precision, i.e. to 67 digits, and then executing the last iteration
at full 200 digits. There is still a wasteful step when we would
go from 60 digits to 67, but much less time would be wasted
than in the calculation with 200 digits of precision.

Newton’s method is based on approximating the function
f (x) by a straight line. One can achieve better approximation
and therefore faster convergence to the root if one approximates
the function with a polynomial curve of higher order. The rou-
tine PiMethod1() uses the iteration

x′ = x + sin x +
1

6
(sin x)3 +

3

40
(sin x)5 +

5

112
(sin x)7

which has a faster convergence, giving 9 times as many digits at
every iteration. (The series is the Taylor series for arcsin y cut at
O
(
y9
)
.) The same speed-up tricks are used as in PiMethod0().

In addition, the last iteration, which must be done at full pre-
cision, is performed with the simpler iteration x′ = x + sin x to
reduce the number of high-precision multiplications.

Both PiMethod0() and PiMethod1() require a computation of
sin x at every iteration. An industrial-strength arbitrary preci-
sion library such as gmp can multiply numbers much faster than
it can evaluate a trigonometric function. Therefore, it would be
good to have a method which does not require trigonometrics.

PiMethod2() is a simple attempt to remedy the problem. It
computes the Taylor series for arctan x,

arctan x = x− x3

3
+

x5

5
− x7

7
+ ...,

for the value of x obtained as the tangent of the initial guess for
π; in other words, if x = π+ε where ε is small, then tan x = tan ε,
therefore ε = arctan tan x and π is found as π = x − ε. If the
initial guess is good (i.e. ε is very small), then the Taylor series
for arctan x converges very quickly (although linearly, i.e. it
gives a fixed number of digits of π per term). Only a single full-
precision evaluation of tan x is necessary at the beginning of the
algorithm. The complexity of this algorithm is proportional to
the number of digits and to the time of a long multiplication.

Method 2: Borwein’s iteration

The routines PiBrentSalamin() and PiBorwein() are based on
much more advanced mathematics. (See papers by P. Borwein
for review and explanations of the methods.) These methods
do not require evaluations of trigonometric functions, but they
do require taking a few square roots at each iteration, and all
calculations must be done using full precision. Using modern
algorithms, one can compute a square root roughly in the same
time as a division; but Yacas’s internal math is not yet up to it.
Therefore, these two routines perform poorly compared to the
more simple-minded PiMethod0().

Method 3: AGM sequence (Brent-Salamin)

The algorithm of Brent and Salamin uses the AGM sequence.
The calculation can be summarized as follows:(

a = 1, b =
1√
2
, c =

1

2
, k = 1

)
While(Not enough precision) [

(a, b) =
(

a + b

2
,
√

ab
)

c = c− 2k
(
a2 − b2

)
π = 2

a2

c

k = k + 1

];

At each iteration, the variable π will have twice as many
correct digits as it had at the previous iteration.

Method 4: Ramanujan’s series

Another method for fast computation of π is based on the fol-
lowing mysterious series,

1

π
=

12

C
√

C

∞∑
n=0

(−1)n (6n)!
A + nB

(3n)! (n!)3 C3n
,

where A = 13591409, B = 545140134, and C = 640320. This
formula was found by the Chudnovsky brothers, but it traces
back to Ramanujan’s notebooks.

To obtain the value of π with P decimal digits, one needs to
take

n ≈ P
ln 10

3 ln C
12

<
479

6793
P

terms of the series.

48

If this series is evaluated using Horner’s scheme (the routine
PiChudnovsky), then about ln n

ln 10
extra digits are needed to com-

pensate for round-off error while adding n terms. This method
does not require any long multiplications and costs O

(
P 2
)

op-
erations.

A potentially much faster way to evaluate this series at high
precision is by using the binary splitting technique. This would
give the asymptotic cost O (M (P ln P) ln P).

Which method to use

This remains to be seen.

5.6 Trigonometric functions

Trigonometric functions sin x, cos x are computed by subtract-
ing 2π from x until it is in the range 0 < x < 2π and then using
the Taylor series. (The value of π is precomputed.)

Tangent is computed by dividing sin x
cos x

or from sin x using the
identity

tan x =
sin x√

1− (sin x)2
.

Method 1: Taylor series

The Taylor series for the basic trigonometric functions are

sin x = x− x3

3!
+

x5

5!
− x7

7!
+ ...,

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+

These series converge for all x but are optimal for multiple-
precision calculations only for small x. The convergence rate
and possible optimizations are the same as those of the Taylor
series for exp (x).

Method 2: argument reduction

Basic argument reduction requires a precomputed value for π
2
.

The identities sin
(
x + π

2

)
= cos x, cos

(
x + π

2

)
= − sin x can

be used to reduce the argument to the range between 0 and π
2
.

Then the bisection for cos x and the trisection for sin x are used.
For cos x, the bisection identity can be used more efficiently

if it is written as

1− cos 2x = 4 (1− cos x)− 2 (1− cos x)2 .

If 1− cos x is very small, then this decomposition allows to use
a shorter multiplication and reduces round-off error.

For sin x, the trisection identity is

sin 3x = 3 sin x− 4 (sin x)3 .

The optimal number of bisections or trisections should be
estimated to reduce the total computational cost. The result-
ing number will depend on the magnitude of the argument x,
on the required precision P , and on the speed of the available
multiplication M (P).

Method 3: inverse arctan x

The function arctan x can be found from its Taylor series, or
from the complex AGM method, or by another method. Then
the function can be inverted by Newton’s iteration to obtain
tan x and from it also sin x, cos x using the trigonometric iden-
tities.

Alternatively, arcsin x may be found from the Taylor series
and inverted to obtain sin x.

This method seems to be of marginal value since efficient
direct methods for cos x, sin x are available.

Which method to use

This remains to be seen.

5.7 Inverse trigonometric func-
tions

Inverse trigonometric functions are computed by various meth-
ods. To compute y = arcsin x, Newton’s method is used for to
invert x = sin y. The inverse tangent arctan x can be computed
by its Taylor series,

arctan x = x− x3

3
+

x5

5
− ...,

or by the continued fraction expansion,

arctan x =
x

1 + x2

3+
(2x)2

5+
(3x)2
7+...

.

The convergence of this expansion for large |x| is improved by
using the identities

arctan x =
π

2
Sign (x)− arctan

1

x
,

arctan x = 2arctan
x

1 +
√

1 + x2
.

Thus, any value of x is reduced to |x| < 0.42. This is imple-
mented in the standard library scripts.

By the identity arccos x ≡ π
2
− arcsin x, the inverse cosine

is reduced to the inverse sine. Newton’s method for arcsin x
consists of solving the equation sin y = x for y. Implementation
is similar to the calculation of π in PiMethod0().

For x close to 1, Newton’s method for arcsin x converges very
slowly. An identity

arcsin x = Sign (x)
(

π

2
− arcsin

√
1− x2

)
can be used in this case. Another potentially useful identity is

arcsin x = 2arcsin
x

√
2
√

1 +
√

1− x2
.

Inverse tangent can also be related to inverse sine by

arctan x = arcsin
x√

1 + x2
,

arctan
1

x
= arcsin

1√
1 + x2

.

Alternatively, the Taylor series can be used for the inverse
sine:

arcsin x = x +
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+

An everywhere convergent continued fraction can be used for
the tangent:

tan x =
x

1− x2

3− x2

5− x2
7−...

.

49

Hyperbolic and inverse hyperbolic functions are reduced to
exponentials and logarithms: cosh x = 1

2
(exp (x) + exp (−x)),

sinh x = 1
2

(exp (x)− exp (−x)), tanh x = sinh x
cosh x

,

arccosh x = ln
(
x +

√
x2 − 1

)
,

arcsinh x = ln
(
x +

√
x2 + 1

)
,

arctanh x =
1

2
ln

1 + x

1− x
.

Continued fraction for arctan x

The idea to use continued fraction expansions for ArcTan comes
from the book [Crenshaw 2000]. In that book the author ex-
plains how he got the idea to use continued fraction expansions
to approximate arctan x, given that the Taylor series converges
slowly, and having a hunch that in that case the continued frac-
tion expansion then converges rapidly. He then proceeds to show
that in the case of arctan x, this advantage is very significant.
However, it might not be true for all slowly converging series.

The convergence of the continued fraction expansion of
arctan x is indeed better than convergence of the Taylor series.
Namely, the Taylor series converges only for |x| < 1 while the
continued fraction converges for all x. However, the speed of its
convergence is not uniform in x; the larger the value of x, the
slower the convergence. The necessary number of terms of the
continued fraction is in any case proportional to the required
number of digits of precision, but the constant of proportional-
ity depends on x.

This can be understood by the following argument. The dif-
ference between two partial continued fractions that differ only
by one extra last term can be estimated as

|δ| ≡

∣∣∣∣∣∣ b0

a1 + b1

...+
bn−1

an

− b0

a1 + b1

...+
bn

an+1

∣∣∣∣∣∣ <
b0b1...bn

(a1...an)2 an+1

.

(This is a conservative estimate that could be improved with
more careful analysis. See also the section on numerical contin-
ued fractions.) For the above continued fraction for arctan x,
this directly gives the following estimate,

|δ| <
x2n+1 (n!)2

(2n + 1) ((2n− 1)!!)2
≈ π

(
x

2

)2n+1

.

This formula only gives a meaningful bound if x < 2, but it is
clear that the precision generally becomes worse when x grows.
If we need P digits of precision, then, for a given x, the number
of terms n has to be large enough so that the relative precision
is sufficient, i.e.

δ

arctan x
< 10−P .

This gives n > P ln 10
ln 4−2 ln x

and for x = 1, n > 3
2
P . This estimate

is very close for small x and only slightly suboptimal for larger
x: numerical experimentation shows that for x ≤ 1, the required
number of terms for P decimal digits is only about 4

3
P , and for

x ≤ 0.42, n must be about 3
4
P . If x < 1 is very small then one

needs a much smaller number of terms n > P ln 10
ln 4−2 ln x

. Round-
off errors may actually make the result less precise if we use
many more terms than needed.

If we compare the rate of convergence of the continued frac-
tion for arctan x with the Taylor series

arctan x =

∞∑
n=0

(−1)n x2n+1

2n + 1
,

we find that the number of terms of the Taylor series needed
for P digits is about n > P ln 10

2 ln x
. Since the range of x can be

reduced to about [0, 0.42] by trigonometric identities, the differ-
ence between this and P ln 10

ln 4−2 ln x
is never very large. At most

twice as many terms n are needed in the Taylor series as in the
continued fraction. However, a Taylor series can be evaluated
efficiently using O

(√
n
)

long multiplications, while a continued
fraction with n terms always requires n divisions. Therefore,
at high enough precision the continued fraction method will be
much less efficient than the Taylor series.

Which method to use

This remains to be seen.

5.8 Factorials and binomial coeffi-
cients

The factorial is defined by n! ≡ n (n− 1) ... · 1 for integer n ≥ 1
and the binomial coefficient is defined by(

n

m

)
≡ n!

m! (n−m)!
.

The “double factorial” n!! ≡ n (n− 2) (n− 4) ... is also useful
for some calculations. For convenience, one defines 0! ≡ 1, 0!! ≡
1, and (−1)!! ≡ 1; with these definitions, the recurrence relations

n! (n + 1) = (n + 1)!,

n!! (n + 2) = (n + 2)!!

are valid also for n = 0 and n = −1.
There are two tasks related to the factorial: the exact integer

calculation and an approximate calculation to some floating-
point precision. Factorial of n has approximately n ln n

ln 10
decimal

digits, so an exact calculation is practical only for relatively
small n. In the current implementation, exact factorials for
n > 65535 are not computed but print an error message advising
the user to avoid exact computations of large factorials. For
example, Internal’LnGammaNum(n+1) is able to compute ln n!
for very large n to any desired floating-point precision.

Exact factorials

To compute factorials exactly, we use two direct methods. The
first method is to multiply the numbers 1, 2, ..., n in a loop.
This method requires n multiplications of short numbers with
P -digit numbers, where P = O (n ln n) is the number of digits
in n!. Therefore its complexity is O

(
n2 ln n

)
. This factorial

routine is implemented in the Yacas core with a small speedup:
consecutive pairs of integers are first multiplied together using
platform math and then multiplied by the accumulator product.

A second method uses a binary tree arrangement of the
numbers 1, 2, ..., n similar to the recursive sorting routine
(“merge-sort”). If we denote by a *** b the ”partial facto-
rial” product a (a + 1) ... (b− 1) b, then the tree-factorial algo-
rithm consists of replacing n! by 1∗ ∗ ∗n and recursively evalu-
ating (1∗ ∗ ∗m) ((m + 1) ∗ ∗ ∗n) for some integer m near n

2
. The

partial factorials of nearby numbers such as m∗ ∗ ∗ (m + 2) are
evaluated explicitly. The binary tree algorithm requires one
multiplication of P

2
digit integers at the last step, two P

4
digit

multiplications at the last-but-one step and so on. There are
O (ln n) total steps of the recursion. If the cost of multiplica-
tion is M (P) = P 1+a (ln P)b, then one can show that the total
cost of the binary tree algorithm is O (M (P)) if a > 0 and

50

O (M (P) ln n) if a = 0 (which is the best asymptotic multipli-
cation algorithm).

Therefore, the tree method wins over the simple method if
the cost of multiplication is lower than quadratic.

The tree method can also be used to compute “double facto-
rials” (n!!). This is faster than to use the identities

(2n)!! = 2nn!

and

(2n− 1)!! =
(2n)!

2nn!
.

Double factorials are used, for instance, in the exact calculation
of the Gamma function of half-integer arguments.

Binomial coefficients
(

n
m

)
are found by first selecting the

smaller of m, n−m and using the identity
(

n
m

)
=
(

n
n−m

)
. Then

a partial factorial is used to compute(
n

m

)
=

(n−m + 1) ∗ ∗ ∗n
m!

.

This is always much faster than computing the three factorials
in the definition of

(
n
m

)
.

Approximate factorials

A floating-point computation of the factorial may proceed ei-
ther via Euler’s Gamma function, n! = Γ (n + 1), or by a di-
rect method (multiplying the integers and maintaining a certain
floating-point precision). If the required precision is much less
than the number of digits in the exact factorial, then almost all
multiplications will be truncated to the precision P and the tree
method O (nM (P)) is always slower than the simple method
O (nP).

Which method to use

This remains to be seen.

5.9 Classical orthogonal polynomi-
als: general case

A family of orthogonal polynomials is a sequence of polynomials
qn (x), n = 0, 1, ... that satisfy the orthogonality condition on
some interval [a, b] with respect to some weight function ρ (x):∫ b

a

qm (x) qn (x) ρ (x) dx = 0

for m 6= n. The interval [a, b] can be finite or infinite and the
weight function must be real and non-negative on this interval.

In principle, one could choose any (non-negative) weight func-
tion ρ (x) and any interval [a, b] and construct the correspond-
ing family of orthogonal polynomials qn (x). For example, take
q0 = 1, then take q1 = x+c with unknown c and find such c that
q0 and q1 satisfy the orthogonality condition; this requires solv-
ing a linear equation. Then we can similarly find two unknown
coefficients of q2 and so on. (This is called the Gramm-Schmidt
orthogonalization procedure.)

But of course not all weight functions ρ (x) and not all inter-
vals [a, b] are equally interesting. There are several “classical”
families of orthogonal polynomials that have been of use to the-
oretical and applied science. The “classical” polynomials are
always solutions of a simple second-order differential equation
and are always a specific case of some hypergeometric function.

The construction of “classical” polynomials can be described
by the following scheme. The function ρ (x) must satisfy the
so-called Pearson’s equation,

1

ρ (x)

(
d

dx
ρ (x)

)
=

α (x)

β (x)
,

where the functions α, β are of the form

α (x) = α0 + α1x,

β (x) = β0 + β1x + β2x
2.

Also, the following boundary conditions must be satisfied at
both ends a, b of the interval,

ρ (a) β (a) = ρ (b) β (b) = 0.

If the function ρ (x) and the interval [a, b] are chosen in this
way, then the corresponding orthogonal polynomials qn (x) are
solutions of the differential equation

∂

∂x

(
β (x) ρ (x)

(
∂

∂x
qn (x)

))
− n (α1 + (n + 1) β2) qn = 0.

The polynomials qn (x) are also given by the Rodrigues formula,

qn (x) =
An

ρ (x)

(
∂n

∂xn
(ρ (x) β (x)n)

)
,

where An is a normalization constant. It is usual to normalize
the polynomials so that∫ b

a

qn (x)2 ρ (x) dx = 1.

The normalization constant An must be chosen accordingly.

Finally, there is a formula for the generating function of the
polynomials,

G (x, w) =
1

ρ (x)

ρ (t (x, w))

|1− w (β1 + 2β2t (x, w))| ,

where t (x, w) is the root of t−x−wβ (t) = 0 which is nearest to
t = x at small w. This function G (x, w) gives the unnormalized
polynomials,

G (x, w) =

∞∑
n=0

qn (x)

n!
wn,

where

qn (x) =
1

ρ (x)

(
∂n

∂xn
(ρ (x) β (x)n)

)
.

The classical families of (normalized) orthogonal polynomials
are obtained in this framework with the following definitions:

• The Legendre polynomials Pn (x): a = −1, b = 1, ρ (x) =

1, α (x) = 0, β (x) = 1− x2, An = (−1)n

2nn!
.

• The Laguerre polynomials (Lm)n (x): a = 0, b = +∞,
ρ (x) = xm exp (−x), (here m > −1 or else the weight
function is not integrable on the interval), α (x) = m − x,
β (x) = x, An = 1.

• The Hermite polynomials Hn (x): a = −∞, b = +∞,
ρ (x) = exp

(
−x2

)
, α (x) = −2x, β (x) = 1, An = (−1)n.

• The Chebyshev polynomials of the first kind Tn (x): a =
−1, b = 1, ρ (x) = 1√

1−x2
, α (x) = x, β (x) = 1 − x2,

An = (−1)n

(2n)!!
.

51

The Rodrigues formula or the generating function are not
efficient ways to calculate the polynomials. A better way is
to use linear recurrence relations connecting qn+1 with qn and
qn−1. (These recurrence relations can also be written out in full
generality through α (x) and β (x) but we shall save the space.)

There are three computational tasks related to orthogonal
polynomials:

1. Compute all coefficients of a given polynomial qn (x) ex-
actly. The coefficients are rational numbers, but their
numerators and denominators usually grow exponentially
quickly with n, so that at least some coefficients of the
n-th polynomial are n-digit numbers. The array of coeffi-
cients can be obtained using recurrence relations n times.
The required number of operations is proportional to n2

(because we need n coefficients and we have n recurrence
relations for each of them) and to the multiplication time
of n-digit integers, i.e. O

(
n2M (n)

)
. Sometimes an exact

formula for the coefficients is available (this is the case for
the four “classical” families of polynomials above; see the
next section). Then the computation time dramatically
drops down to O

(
n2
)

because no recurrences are needed.

2. Compute the numerical value of a given polynomial qn (x)
at given x, either exactly (at rational x) or approximately
in floating point. This requires O (nM (n)) operations for
exact computation and O (nM (P)) operations in P -digit
floating point.

3. Compute a series of orthogonal polynomials with given co-
efficients fn, i.e. f (x) ≡

∑N

n=0
fnqn (x), at a given x. This

task does not actually require computing the polynomi-
als first, if we use the so-called Clenshaw-Smith procedure
which gives the value of f (x) directly in n iterations. (See
below, in The Yacas book of algorithms, Chapter 4, Section
10 for more explanations.) The number of operations is
again O (nM (P)).

In the next section we shall give some formulae that allow to
calculate particular polynomials more efficiently.

5.10 Classical orthogonal polyno-
mials: special cases

The fastest algorithm available is for Chebyshev (sometimes
spelled Tschebyscheff) polynomials Tn (x), Un (x). The follow-
ing recurrence relations can be used:

T2n (x) = 2 (Tn (x))2 − 1,

T2n+1 (x) = 2Tn+1 (x) Tn (x)− x,

U2n (x) = 2Tn (x) Un (x)− 1,

U2n+1 (x) = 2Tn+1 (x) Un (x) .

This allows to compute Tn (x) and Un (x) in time logarithmic
in n.

There is a way to implement this method without recursion.
The idea is to build the sequence of numbers n1, n2, ... that are
needed to compute Tn (x).

For example, to compute T19 (x) using the second recurrence
relation, we need T10 (x) and T9 (x). We can write this chain
symbolically as 19 ∼ c (9, 10). For T10 (x) we need only T5 (x).
This we can write as 10 ∼ c (5). Similarly we find: 9 ∼ c (4, 5).
Therefore, we can find both T9 (x) and T10 (x) if we know T4 (x)
and T5 (x). Eventually we find the following chain of pairs:

19 ∼ c (9, 10) ∼ c (4, 5) ∼ c (2, 3) ∼ c (1, 2) ∼ c (1) .

Therefore, we find that T19 (x) requires to compute Tk (x) se-
quentially for all k that appear in this chain (1,2,3,4,5,9,10).

There are about 2 ln n
ln 2

elements in the chain that leads to the
number n. We can generate this chain in a straightforward way
by examining the bits in the binary representation of n. There-
fore, we find that this method requires no storage and time log-
arithmic in n. A recursive routine would also take logarithmic
time but require logarithmic storage space.

Note that using these recurrence relations we do not obtain
any individual coefficients of the Chebyshev polynomials. This
method does not seem very useful for symbolic calculations
(with symbolic x), because the resulting expressions are rather
complicated combinations of nested products. It is difficult to
expand such an expression into powers of x or manipulate it
in any other way, except compute a numerical value. However,
these fast recurrences are numerically unstable, so numerical
values need to be evaluated with extended working precision.
Currently this method is not used in Yacas, despite its speed.

An alternative method for very large n would be to use the
identities

Tn (x) = cos n arccos x,

Un (x) =
sin (n + 1) arccos x√

1− x2
.

The computation will require an extended-precision evaluation
of arccos x.

Coefficients for Legendre, Hermite, Laguerre, Chebyshev
polynomials can be obtained by explicit formulae. This is faster
than using recurrences if we need the entire polynomial symbol-
ically, but still slower than the recurrences for numerical calcu-
lations.

• Chebyshev polynomials of the first and of the second kind:
If k =

⌊
n
2

⌋
, then

Tn (x) =

k∑
i=0

(−1)i (2x)n−2i

n− i

(
n− i

i

)
,

Un (x) =

k∑
i=0

(−1)i (2x)n−2i

(
n− i

i

)
.

Here it is assumed that n > 0 (the case n = 0 must be
done separately). The summation is over integer values of
i such that 0 ≤ 2i ≤ n, regardless of whether n is even or
odd.

• Hermite polynomials: For even n = 2k where k ≥ 0,

Hn (x) = (−2)k (n− 1)!!

k∑
i=0

x2i (−4)i k!

(2i)! (k − i)!
,

and for odd n = 2k + 1 where k ≥ 0,

Hn (x) = 2 (−2)k n!!

k∑
i=0

x2i+1 (−4)i k!

(2i + 1)! (k − i)!
.

• Legendre polynomials: If k =
⌊

n
2

⌋
, then

Pn (x) = 2−n

k∑
i=0

(−1)i xn−2i

(
n

i

)(
2n− 2i

n

)
.

The summation is over integer values of i such that 0 ≤
2i ≤ n, regardless of whether n is even or odd.

52

• Laguerre polynomials:

OrthoL (n, a, x) =

n∑
i=0

(−x)i

i!

(
n + a

n− i

)
.

Here the parameter a might be non-integer. So the bino-
mial coefficient must be defined for non-integer a through
the Gamma function instead of factorials, which gives(

n + a

n− i

)
=

(n + a) ... (i + 1 + a)

(n− i)!
.

The result is a rational function of a.

In all formulae for the coefficients, there is no need to compute
factorials every time: the next coefficient can be obtained from
the previous one by a few short multiplications and divisions.
Therefore this computation costs O

(
n2
)

short operations.

5.11 Series of orthogonal polyno-
mials

If we need to compute a series of orthogonal polynomials with
given coefficients fn, i.e.

f (x) ≡
N∑

n=0

fnqn (x)

at a given x, we do not need to compute the orthogonal poly-
nomials separately. The Clenshaw-Smith recurrence procedure
allows to compute the value of the sum directly.

Suppose a family of functions qn (x), n = 0, 1, ... satisfies
known recurrence relations of the form

qn = An (x) qn−1 + Bn (x) qn−2,

where An (x) and Bn (x) are some known functions and q0 (x)
and q1 (x) are known.

The procedure goes as follows [Luke 1975]. First, for con-
venience, we define q−1 ≡ 0 and the coefficient A1 (x) so that
q1 = A1q0. This allows us to use the above recurrence relation
formally also at n = 1. Then, we take the array of coefficients
fn and define a backward recurrence relation

XN+1 = XN+2 = 0,

Xn = An+1Xn+1 + Bn+2Xn+2 + fn,

where n = N , N − 1, ..., 0. (Note that here we have used the
artificially defined coefficient A1.) Magically, the value we are
looking for is given by

f (x) = X0q0.

This happens because we can express

fn = Xn −An+1Xn+1 −Bn+2Xn+2,

for n = 0, 1, ..., N , regroup the terms in the sum

f (x) ≡
N∑

n=0

fnqn (x)

to collect Xn, obtain

f (x) =

N∑
n=0

Xnqn −
N∑

n=1

XnAnqn−1 −
N∑

n=2

XnBnqn−2,

and finally
f (x) = X0q0 + X1 (q1 −A1q1)

+

N∑
n=2

Xn (qn −Anqn−1 −Bnqn−2) = X0q0.

The book [Luke 1975] warns that the recurrence relation for
Xn is not always numerically stable.

Note that in the book there seems to be some confusion as
to how the coefficient A1 is defined. (It is not defined explicitly
there.) Our final formula differs from the formula in [Luke 1975]
for this reason.

The Clenshaw-Smith procedure is analogous to the Horner
scheme of calculating polynomials. This procedure can also be
generalized for linear recurrence relations having more than two
terms. The functions q0 (x), q1 (x), An (x), and Bn (x) do not
actually have to be polynomials for this to work.

53

Chapter 6

Numerical algorithms III: special
functions

6.1 Euler’s Gamma function

Euler’s Gamma function Γ (z) is defined for complex z such that
Re (z) > 0 by the integral

Γ (z) ≡
∫ ∞

0

exp (−t) tz−1dz.

The Gamma function satisfies several identities that can be
proved by rearranging this integral; for example, Γ (z + 1) =
zΓ (z). This identity defines Γ (z) for all complex z. The
Gamma function is regular everywhere except nonpositive in-
tegers (0, −1, −2, ...) where it diverges.

Special arguments

For real integers n > 0, the Gamma function is the same as the
factorial,

Γ (n + 1) ≡ n!,

so the factorial notation can be used for the Gamma function
too. Some formulae become a little simpler when written in
factorials.

The Gamma function is implemented as Gamma(x). At integer
values n of the argument, Gamma(n) is computed exactly. Be-
cause of overflow, it only makes sense to compute exact integer
factorials for small numbers n. Currently a warning message is
printed if a factorial of n > 65535 is requested.

For half-integer arguments Γ (x) is also computed exactly,
using the following identities (here n is a nonnegative integer
and we use the factorial notation):(

+
2n + 1

2

)
! =

√
π

(2n + 1)!

22n+1n!
,(

−2n + 1

2

)
! = (−1)n √π

22nn!

(2n)!
.

For efficiency, “double factorials” are used in this calculation.
The “double factorial” is defined as n!! = n (n− 2) ... and sat-
isfies the identities

(2n− 1)!! =
(2n)!

2nn!
,

(2n)!! = 2nn!.

For convenience, one defines 0! = 1, 0!! = 1, (−1)!! = 1.
If the factorial of a large integer or half-integer n needs to

be computed not exactly but only with a certain floating-point
precision, it is faster (for large enough |n|) not to evaluate an
exact integer product, but to use the floating-point numerical
approximation. This method is currently not implemented in
Yacas.

There is also the famous Stirling’s asymptotic formula for
large factorials,

ln n! ≈ ln 2πn

2
+ n ln

n

e
+

1

12n
− 1

360n3
+ ...

An analogous formula for double factorials can be easily found.

Method 0: power series (rational argu-
ments)

For “small” rational arguments, i.e. for numbers s = p
q

where
p, q are small integers, there is a faster method for computing
Γ (s). This method was used in [Smith 2001]. [Haible et al.
1998] give this method in conjunction with the binary splitting
technique.

Repeated partial integration gives the expansion

Γ (s) = Ms exp (−M)

∞∑
n=0

Mn

s (s + 1) ... (s + n)

+

∫ ∞

M

us−1 exp (−u) du.

Suppose that 1 ≤ s ≤ 2. Then the remainder is given by the
last integral that is smaller than M exp (−M). By choosing M
a large enough integer, the remainder can be made small enough
to discard it. Then we obtain a series of rational numbers that
can be evaluated directly in O

(
P 2
)

time or using the binary
splitting technique in O (M (P ln P) ln P) time. This method is
currently not implemented in Yacas.

Method 1: the Lanczos-Spouge formula

For arbitrary complex arguments with nonnegative real part,
the function Internal’GammaNum(x) computes a uniform appox-
imation of Lanczos [Lanczos 1964] modified by Spouge [Spouge
1994]. (See also [Godfrey 2001] for some more explanations.)
This function is also triggered when in numeric mode, eg. when
calling N(Gamma(x)), which is the preferred method for end
users.

The method gives the Γ-function only for arguments with
positive real part; at negative values of the real part of the
argument, the Γ-function is computed via the identity

Γ (x) Γ (1− x) =
π

sin πx
.

The Lanczos-Spouge approximation formula depends on a pa-
rameter a,

Γ (z) =

√
2π (z + a)z− 1

2

zez+a

(
1 +

ea−1

√
2π

N∑
k=1

ck

z + k

)
,

54

with N ≡ dae − 1. The coefficients ck are defined by

ck = (−1)k−1 (a− k)k− 1
2

ek−1 (k − 1)!
.

The parameter a is a free parameter of the approximation that
determines also the number of terms in the sum. Some choices of
a may lead to a slightly more precise approximation, but larger
a is always better. The number of terms N must be large enough
to produce the required precision. The estimate of the relative
error for this formula is valid for all z such that Re (z) > 0 and
is

error <
(2π)−a

√
2πa

a

a + z
.

The lowest value of a to produce P correct digits is estimated
as

a =
(
P − ln P

ln 10

)
ln 10

ln 2π
− 1

2
.

In practical calculations, the integer logarithm routine IntLog

is used and the constant ln 10
ln 2π

is approximated from above by
659/526, so that a is not underestimated.

The coefficients ck and the parameter a can be chosen to
achieve a greater precision of the approximation formula. How-
ever, the recipe for the coefficients ck given in the paper by
Lanczos is too complicated for practical calculations in arbi-
trary precision: the time it would take to compute the array of
N coefficients ck grows as N3. Therefore it is better to use less
precise but much simpler formulae derived by Spouge.

Round-off error in the Lanczos method

In the calculation of the sum S ≡
∑N

k=1
ck (z + k)−1, a certain

round-off error results from the changing signs in ck, and from
the fact that some values ck are much larger than the final value
of the sum. This leads to some cancellations and as a result to
a certain loss of precision.

At version 1.2.1, Yacas is limited in its internal arbitrary
precision facility that does not support true floating-point com-
putation but rather uses fixed-point logic; this hinders precise
calculations with floating-point numbers. In the current version
of the Internal’GammaNum() function, two workarounds are im-
plemented. First, a Horner scheme is used to compute the sum;
this is somewhat faster and leads to smaller round-off errors.
Second, intermediate calculations are performed at 40% higher
precision than requested. This is much slower but allows to
obtain results at desired precision.

If strict floating-point logic is used, the working precision nec-
essary to compensate for the cancellations must be 1.1515P dig-
its for P digits of the result. This can be shown as follows.

The sum converges to a certain value S which is related to the
correct value of the Gamma function at z. After some algebra

we find that S is of order
√

a if z > a and of order a
1
2−z if a > z.

Since a is never a very large number, we can consider the value
of S to be roughly of order 1, compared with exponentially large
values of some of the terms ck of this sum. The magnitude of a
coefficient ck is estimated by Stirling’s formula,

ln |ck| ≈ (k − 1) ln
a− k

k − 1
.

(Here we have put approximately k − 1 ≈ k − 1
2

since k is not
small.) This function has a maximum at k ≈ 1+0.2178 (a− 1).
Then the largest magnitude of a coefficient ck at this k is ap-
proximately exp (0.2785 (a− 1)). The constant 0.2785 = W

(
1
e

)
is the solution of x+ln x+1 = 0. Here x = k−1

a−k
and W is Lam-

bert’s function. Now, a − 1 ≈ P ln 10
ln 2π

, so the maximum of ck is

100.1515P . Therefore we have a certain cancellation in the sum
S: adding and subtracting some numbers of order 100.1515P pro-
duces an answer of order 1. Therefore we need to have at least

15(The constant
W(1

e)
ln 2π

≈ 0.1515 is independent of the base 10.)

Other methods for the Gamma function

More traditional ways of calculating the Gamma function are
the Stirling asymptotic series and the Sweeney-Brent method of
combined series.

Method 2: Stirling’s asymptotic series

The Stirling asymptotic series for the Gamma function is

ln Γ (x) ∼
(
x− 1

2

)
ln x− x +

1

2
ln 2π

+

∞∑
n=1

B2n

2n (2n− 1) x2n−1
.

This series is valid asymptotically for large |x|, also for complex
values of x (but excluding the negative real values). Computa-
tion of this series up to n = N requires finding the Bernoulli
numbers Bn up to N .

For a given (large) value of |x|, the terms of this series de-
crease at first, but then start to grow. (Here x can be a complex
number.) There exist estimates for the error term of the asymp-
totic series (see [Abramowitz et al. 1964], 6.1.42). Roughly, the
error is of the order of the first discarded term.

We can estimate the magnitude of the terms using the asymp-
totic formula for the Bernoulli numbers (see below). After some
algebra, we find that the value of n at which the series starts to
grow and diverge is n0 ≈ π |x|+ 2. Therefore at given x we can
only use the asymptotic series up to the n0-th term.

For example, if we take x = 10, then we find that the 32-nd
term of the asymptotic series has the smallest magnitude (about
10−28) but the following terms start to grow.

To be on the safe side, we should drop a few more terms from
the series. Define the number of terms by n0 ≡ π |x|. Then the

order of magnitude of the n0-th term is exp(−2π|x|)
2π2|x| . This should

be compared with the magnitude of the sum of the series which
is of order |x ln x|. We find that the relative precision of P
decimal digits or better is achieved if

(2π − 1) x + (x + 1) ln x + 3.9 > P ln 10.

If (x,P) do not satisfy this inequality, the asymptotic method
does not provide enough precision. For example, with x = 10
we obtain P ≤ 35. So the asymptotic series gives the value of
Γ (10) with not more than 35 decimal digits.

For very large P , the inequality is satisfied when roughly x >
P ln 10

ln P
. Assuming that the Bernoulli numbers are precomputed,

the complexity of this method is that of computing a Taylor
series with n0 terms, which is roughly O

(√
P
)

M (P).
What if x is not large enough? Using the identity xΓ (x) =

Γ (x + 1), we can reduce the computation of Γ (x) to Γ (x + M)
for some integer M . Then we can choose M to be large
enough so that the asymptotic series gives the required pre-
cision when evaluated at x + M . We shall have to divide the
result M times by some long numbers to obtain Γ (x). There-
fore, the complexity of this method for given (x,P) is increased
by M (P)

(
P ln 10

ln P
− x
)
. For small x this will be the dominant

contribution to the complexity.
On the other hand, if the Bernoulli numbers are not available

precomputed, then their calculation dominates the complexity
of the algorithm.

55

Method 3: the Sweeney-Brent trick

The second method for the Gamma function Γ (x) was used in
R. P. Brent’s Fortran MP package [Brent 1978]. Brent refers
to [Sweeney 1963] for the origin of this method. Therefore, we
called this method the “Sweeney-Brent” method.

This method works well when 1 ≤ x < 2 (other values of x
need to be reduced first). The idea is to represent the Gamma
function as a sum of two integrals,

Γ (x) =

∫ M

0

ux−1 exp (−u) du +

∫ ∞

M

ux−1 exp (−u) du.

The above identity clearly holds for any M . Both integrals in
this equation can be approximated by power series (although
we may do without the second integral altogether, for a small
increase of computation time). The parameter M and the num-
bers of terms in the series must be chosen appropriately, as we
shall see below.

The first integral in this equation can be found as a sum of
the Taylor series (expanding exp (−u) near u = 0),

∫ M

0

ux−1 exp (−u) du = Mx

∞∑
n=0

(−1)n Mn

(n + x) n!
.

This series absolutely converges for any finite M . However, the
series has alternating signs and incurs a certain round-off error.
The second integral is smaller than Mx−1 exp (−M) and M can
be chosen large enough so that this is smaller than 10−P . This
condition gives approximately M > P ln 10 + ln P ln 10.

Now we can estimate the number of terms in the above series.
We know that the value of the Gamma function is of order 1.
The condition that n-th term of the series is smaller than 10−P

gives n ln n
e
M > P ln 10. With the above value for M , we obtain

n = P ln 10

W(1
e)

where W is Lambert’s function; W
(

1
e

)
≈ 0.2785.

The terms of the series are however not monotonic: first the
terms grow and then they start to decrease, like in the Taylor se-
ries for the exponential function evaluated at a large argument.
The ratio of the (k+1)-th term to the k-th term is approximately

M
k+1

. Therefore the terms with k ≈ M will be the largest and

will have the magnitude of order MM

M !
≈ exp (M) ≈ 10P . In

other words, we will be adding and subtracting large numbers
with P digits before the decimal point, but we need to obtain a
result with P digits after the decimal point. Therefore to avoid
the round-off error we need to increase the working precision to
2P floating-point decimal digits.

It is quicker to compute this series if x is a small rational num-
ber, because then the long multiplications can be avoided, or at
high enough precision the binary splitting can be used. Calcu-
lations are also somewhat faster if M is chosen as an integer
value.

If the second integral is approximated by an asymptotic series
instead of a constant exp (−M), then it turns out that the small-
est error of the series is exp (−2M). Therefore we can choose
a smaller value of M and the round-off error gets somewhat
smaller. According to [Brent 1978], we then need only 3

2
P dig-

its of working precision, rather than 2P , for computing the first
series (and only P

2
digits for computing the second series). How-

ever, this computational savings may not be significant enough
to justify computing a second series.

6.2 Euler’s constant γ

Euler’s constant γ is defined as

γ ≡ lim
n→∞

(
n∑

k=1

1

k
− ln n

)
.

This constant is useful for various reasons, mostly when working
with higher transcendental functions. For example, γ is needed
to obtain a Taylor series expansion of Γ (x). Another useful
relation is

∂

∂x
Γ (x)x=1 = −γ.

Approximately γ ≈ 0.577216.

Method 1: Brent’s decomposition

Computing γ by the series in the definition is extremely slow.
A much faster method can be used, based on some identities of
Bessel functions. (See [Brent et al. 1980] and [Gourdon et al.
2001].)

The basic formulae for the “fast” method (Brent’s method
“B1”) are:

γ ≈ S (n)

V (n)
− ln n,

where S (n) and V (n) are some auxiliary functions, and n is
chosen to be high enough (precise estimates are given below).

First, the sequence Hn is defined as the partial sum of the
harmonic series:

Hn ≡
n∑

k=1

1

k
.

We also define H0 ≡ 0 for convenience. The function V (n) is
the modified Bessel function I0 (2n). It is computed as a Taylor
series

V (n) ≡
∞∑

k=0

(
nk

k!

)2

.

The function S (n) is defined by a series like V (n) but with each
term multiplied by Hk:

S (n) ≡
∞∑

k=0

(
nk

k!

)2

Hk.

Note that we need to compute S (n) and V (n) with enough
precision, so the sum over k will have to be performed up to
a large enough k. (In practice, we do not really need to know
the limit kmax beforehand. Instead, we can simply add terms to
the series for V (n) and S (n) until desired precision is achieved.
Knowing kmax in advance would help only if we needed to com-
pare this method for computing γ with some other method, or
if we would use the rectangular method of evaluating the Taylor
series.)

According to [Brent et al. 1980], the error of this approxima-
tion of γ, assuming that S (n) and V (n) are computed exactly,
is ∣∣∣∣γ − S (n)

V (n)

∣∣∣∣ < π exp (−4n) .

Therefore the parameter n is proportional to the number of
digits we need. If we need P decimal digits (of absolute, not
relative, precision), then we have to choose

n >
P ln 10 + ln π

4
.

The required number of terms kmax in the summation over k
to get S (n) and V (n) with this precision can be approximated

56

as usual via Stirling’s formula. It turns out that kmax is also
proportional to the number of digits, kmax ≈ 2.07P .

Therefore, this method of computing γ has “linear conver-
gence”, i.e. the number of iterations is linear in the number of
correct digits we need in the result. Of course, all calculations
need to be performed with the working precision. The working
precision must be a few digits more than P because we accumu-
late about ln kmax

ln 10
digits of round-off error by performing kmax

arithmetic operations.
Brent mentions a small improvement on this method (his

method “B3”). It consists of estimating the error of the ap-
proximation of γ by an asymptotic series. Denote W (n) the
function

W (n) ≡ 1

4n

2n∑
k=0

((2k)!)3

(k!)4
(16n)2k .

This function is basically the asymptotic series for
I0 (2n) K0 (2n), where I0 and K0 are modified Bessel functions.
The sum in this series has to be evaluated until about k = 2n
to get a good precision. Then a more precise approximation for
γ is

γ ≈ U (n)

V (n)
− W (n)

V (n)2
.

The precision of this approximation is of order O (exp (−8n)) in-
stead of O (exp (−4n)) in Brent’s method “B1”. However, this is
not such a great savings in time, because almost as much addi-
tional work has to be done to compute W (n). Brent estimated
that the method “B3” is about 20% faster than ”B1”.

Method 2: Brent’s summation trick

Computation of S (n) seems to need a running computation of
Hk and a long multiplication by Hk at each term. To compute
S (n) and V (n) faster and more accurately, Brent suggested the
following trick that avoids this long multiplication and computes
Hk simultaneously with the series. Define the function U (n) ≡
S (n) − V (n) ln n. Then γ ≈ U(n)

V (n)
. The series for U (n) is

U (n) ≡
∑∞

k=0
Ak, with

Ak ≡
(

nk

k!

)2

(Hk − ln n) .

If we denote

Bk ≡
(

nk

k!

)2

the k-th term of the series for V (n), then we can compute
Ak and Bk simultaneously using the recurrence relations A0 =
− ln n, B0 = 1,

Bk = Bk−1
n2

k2
,

Ak =
1

k

(
Ak−1

n2

k
+ Bk

)
.

This trick can be formulated for any sequence Ak of the form
Ak = BkCk, where the sequences Bk and Ck are given by the
recurrences Bk = p (k) Bk−1 and Ck = q (k) + Ck−1. Here we
assume that p (k) and q (k) are known functions of k that can
be computed to P digits using O (P) operations, e.g. rational
functions with short constant coefficients. Instead of evaluating
Bk and Ck separately and multiplying them using a long mul-
tiplication, we note that p (k) Ak−1 = BkCk−1. This allows to
compute Ak by using the following two recurrences:

Bk = p (k) Bk−1,

Ak = p (k) Ak−1 + q (k) Bk.

All multiplications and divisions in these recurrence relations
are performed with short integers, so the long multiplications
are avoided. The time complexity of this method is O

(
P 2
)

where P is the required number of digits. A variant of bi-
nary splitting method can be used to reduce the complexity
to O (M (P ln P) ln P) which gives an asymptotic advantage at
very high precision.

Also, it turns out that we can use a variant of the fast “rect-
angular method” to evaluate the series for U (n) and V (n) si-
multaneously. (We can consider these series as Taylor series in
n2.) This however does not speed up the evaluation of γ. This
happens because the rectangular method requires long multipli-
cations and leads in this case to increased round-off errors. The
rectangular method for computing a power series in x is less ef-
ficient than a straightforward computation when x is a “short”
rational or integer number.

The “rectangular method” for computing
∑N

k=0
xkAk needs

to be able to convert a coefficient of the Taylor series into the
next coefficient Ak+1 by “short” operations, more precisely, by
some multiplications and divisions by integers of order k. The
j-th column of the rectangle (j = 0, 1, ...) consists of numbers
xrjArj , xrjArj+1, ..., xrArj+r−1. The numbers of this column
are computed sequentially by short operations, starting from
the xrjAjr which is known from the end of the previous col-
umn. The recurrence relation for Ak is not just some multipli-
cation by rational numbers, but also contains an addition of Bk.
However, if we also use the rectangular method for V (n), the
number xrjBrj will be known and so we will be able to use the
recurrence relation to get xrjArj+1 and all following numbers
of the column.

Derivation of method 1

Brent’s “B1” method can be derived from the Taylor series for
the modified Bessel function Iν (z),

Iν (z) =

∞∑
k=0

zν+2k

2ν+2kΓ (ν + k + 1) k!
,

and the definition of the modified Bessel function K0 (z),

K0 (z) ≡ −
(

∂

∂ν
Iν (z)ν=0

)
.

Here the derivative wrt ν is taken at ν = 0. This derivative
can be evaluated using the above Taylor series for Iν (z) and
expressed through the series for S (n). To compute this, we need
the derivative of the Gamma function at integer arguments n:

∂

∂x
Γ (x)x=n+1 = n! (Hn − γ) .

The resulting identity in the way it is used here is

γ + ln n =
S0 (2n)−K0 (2n)

I0 (2n)
.

Since K0 (2n) decays very quickly at large n, we obtain the
approximation

γ ≈ S0 (2n)

I0 (2n)
− ln n + O (exp (−4n)) .

6.3 Catalan’s constant G

Catalan’s constant G is defined by

G =

∞∑
n=0

(−1)n

(2n + 1)2
.

This series converges very slowly. There are several alternative
methods.

57

Best method so far

A fast series to evaluate this constant is:

G =
π

8
ln
(
2 +

√
3
)

+
3

8

∞∑
n=0

(n!)2

(2n)! (2n + 1)2

[Bailey et al. 1997].

To obtain P decimal digits of relative precision, we need to
take at most P ln 10

ln 4
terms of the series. The sum can be effi-

ciently evaluated using Horner’s scheme, for example

1 +
1

2 · 3

(
1

3
+

2

2 · 5

(
1

5
+

3

2 · 7

(
1

7
+ ...

)))
.

This takes O
(
P 2
)

operations because there are O (P) short mul-
tiplications and divisions of P -digit numbers by small integers.
At very high precision, the binary splitting technique can be
used instead of Horner’s scheme to further reduce the computa-
tion time to O

(
M (P) (ln P)2

)
.

A drawback of this scheme is that it requires a separate high-
precision computation of π,

√
3 and of the logarithm.

Other methods

Another method is based on an identity by Ramanujan. The
formula is

G =

∞∑
k=0

(k!)2

(2k + 1)!
· 2k−1

k∑
j=0

1

2j + 1
.

The k-th term of the outer sum is of order 2−k and so we need
to take slightly more than P ln 10

ln 2
terms for P decimal digits.

But each term is more complicated than in the first method’s
series. The running time of this formula seems to be a few times
slower than the previous method.

This method combined with Brent’s summation trick (see the
section on the Euler constant) was used in [Fee 1990]. Brent’s
trick allows to avoid a separate computation of the harmonic
sum and all long multiplications. Catalan’s constant is obtained
as a limit of Gk where G0 = B0 = 1

2
and

Bk =
k

2k + 1
Bk−1,

Gk =
1

2k + 1
(kGk−1 + Bk) .

The running time is O
(
P 2
)
. Since only rational numbers are

involved, the binary splitting technique can be used at high
precision.

A third formula is more complicated but the convergence is
much faster and there is no need to evaluate any other transcen-
dental functions. This formula is called “Broadhurst’s series”.

G =
3

2

∞∑
k=0

1

16k

7∑
i=0

ai

(8k + i)2
− 1

4

∞∑
k=0

1

4096k

7∑
i=0

ai

(8k + i)2
.

Here the arrays of coefficients are defined
as ai =

(
0, 1,−1, 1

2
, 0,− 1

4
, 1

4
,− 1

8

)
and bi =(

0, 1, 1
2
, 1

8
, 0,− 1

64
,− 1

128
,− 1

512

)
.

We need to take only P ln 10
ln 16

terms of the first series and
P ln 10

ln 4096
terms of the second series. However, each term is about

six times more complicated than one term of the first method’s
series. So there are no computational savings (unless ln x is
excessively slow).

6.4 Riemann’s Zeta function

Riemann’s Zeta function ζ (s) is defined for complex s such that
Re (s) > 0 as a sum of inverse powers of integers:

ζ (s) ≡
∞∑

n=0

1

ns
.

This function can be analytically continued to the entire com-
plex plane except the point s = 1 where it diverges. It satis-
fies several identities, for example, a formula useful for negative
Re (s),

ζ (1− s) =
2Γ (s)

(2π)s cos
πs

2
ζ (s) ,

and a formula for even integers that helps in numerical testing,

ζ (2n) =
(−1)n+1 (2π)2n

2 (2n)!
B2n,

where Bn are Bernoulli numbers. (The values at negative inte-

ger n are given by ζ (−n) = −Bn+1
n+1

.)
The classic book [Bateman et al. 1953], vol. 1, describes

many results concerning the properties of ζ (s).
For the numerical evaluation of Riemann’s Zeta function with

arbitrary precision to become feasible, one needs special algo-
rithms. Recently P. Borwein [Borwein 1995] gave a simple and
quick approximation algorithm for Re (s) > 0. See also [Borwein
et al. 1999] for a review of methods.

It is the “third” algorithm (the simplest one) from P. Bor-
wein’s paper which is implemented in Yacas. The approxima-
tion formula valid for Re (s) > − (n− 1) is

ζ (s) =
1

2n (1− 21−s)

2n−1∑
j=0

ej

(j + 1)s ,

where the coefficients ej for j = 0, ..., 2n− 1 are defined by

ej ≡ (−1)j−1

(
j−n∑
k=0

n!

k! (n− k)!
− 2n

)
,

and the empty sum (for j < n) is taken to be zero. The pa-
rameter n must be chosen high enough to achieve the desired
precision. The error estimate for this formula is approximately

error < 8−n

for the relative precision, which means that to achieve P correct
digits we must have n > P ln 10/ln 8.

This method requires to compute n times the exponential
and the logarithm to find the power (j + 1)−s. This power can
be computed in asymptotic time O (M (P) ln P), unless s is an
integer, in which case this computation is O (M (P)), the cost
of one division by an integer (j + 1)s. Therefore the complexity
of this method is at most O (PM (P) ln P).

The function Zeta(s) calls Internal’ZetaNum(s) to compute
this approximation formula for Re (s) > 1

2
and uses the identity

above to get the value for other s.
For very large values of s, it is faster to use more direct meth-

ods implemented in the routines Internal’ZetaNum1(s,N) and
Internal’ZetaNum2(s,N). If the required precision is P digits
and s > 1 + ln 10

ln P
P , then it is more efficient to compute the

defining series for ζ (s),

ζ (s) ≈
N∑

k=1

1

ks
,

58

up to a certain number of terms N , than to use Borwein’s
method. The required number of terms N is given by

N = 10
P

s−1 .

This is implemented in the routine Internal’ZetaNum1(s).
For example, at 100 digits of precision it is advisable to use
Internal’ZetaNum1(s) only for s > 50, since it would require
N < 110 terms in the series, whereas the expression used in
Internal’ZetaNum(s) uses n = ln 10

ln 8
P terms (of a different se-

ries). The complexity of this method is O (N) M (P).
Alternatively, one can use Internal’ZetaNum2(n,N) which

computes the infinite product over prime numbers pi

1

ζ (n)
≈

M∏
k=1

(
1− 1

ps
k

)
.

Here M must be chosen such that the M -th prime number
pM > N . To obtain P digits of precision, N must be chosen as

above, i.e. N > 10
P

s−1 . Since only prime numbers pi are used,
this formula is asymptotically faster than Internal’ZetaNum1.
(Prime numbers have to be obtained and tested but this is quick
for numbers of size n, compared with other operations.) The
number of primes up to N is asymptotically π (N) ∼ N

ln N
and

therefore this procedure is faster by a factor O (ln N) ∼ O (ln n).
However, for n < 250 it is better (with Yacas internal math) to
use the Internal’ZetaNum1 routine because it involves fewer
multiplications.

Zeta function at special arguments

Recently some identities dating back to S. Ramanujan have been
studied in relation to Riemann’s Zeta function. A side result
was the development of fast methods for computing the Zeta
function at odd integer arguments (see [Borwein et al. 1999] for
a review) and at small rational arguments ([Kanemitsu et al.
2001]).

The value ζ (3), also known as the Apery’s constant, can be
computed using the following geometrically convergent series:

ζ (3) =
5

2

∞∑
k=1

(−1)k−1

k3
(
2k
k

) .

For other odd integers n there is no general analogous for-
mula. The corresponding expressions for ζ (5) and ζ (7) are

ζ (5) = 2

∞∑
k=1

(−1)k−1

k5
(
2k
k

) − 5

2

∞∑
k=1

(−1)k−1

k3
(
2k
k

) k−1∑
j=1

1

j2
;

ζ (7) =
5

2

∞∑
k=1

(−1)k−1

k7
(
2k
k

) +
25

2

∞∑
k=1

(−1)k−1

k3
(
2k
k

) k−1∑
j=1

1

j4
.

In these series the term
(
2k
k

)
grows approximately as 4k and

therefore one can take no more than P ln 10
ln 4

terms in the series
to get P decimal digits of relative precision.

For odd integer n there are the following special relations: for
n ≡ 3 mod 4,

ζ (n) =
(2π)n

2 (n + 1)!

n+1
2∑

k=0

(−1)k−1

(
n + 1

2k

)
Bn+1−2kB2k

−2

∞∑
k=1

1

kn (exp (2πk)− 1)
,

and for n ≡ 1 mod 4,

ζ (n) =
(2π)n

(n + 1)! (n− 1)

...

n+1
4∑

k=0

(−1)k (n + 1− 4k)

(
n + 1

2k

)
Bn+1−2kB2k

−2

∞∑
k=1

exp (2πk)
(
1 + 4πk

k−1

)
− 1

kn (exp (2πk)− 1)2
.

These relations contain geometrically convergent series, and
it suffices to take P ln 10

2π
terms to obtain P decimal digits of

relative precision.
Finally, [Kanemitsu et al. 2001] gave a curious formula for

the values of Riemann’s Zeta function at rational values between
0 and 2 (their “Corollary 1”). This formula is very complicated
but contains a geometrically convergent series.

We shall have to define several auxiliary functions to make
the formula more understandable. We shall be interested in the
values of ζ

(
p
N

)
where p, N are integers. For integer h, N such

that 0 ≤ h ≤ N , and for arbitrary real x,

ζ
(

2h− 1

N

)
=

Nx

π

(
2π

x

) 2h−1
N

sin
π (2h− 1)

2N
L (x, N, h) ,

ζ
(

N − 2h + 1

N

)
=

N

Γ
(

N−2h+1
N

)x
N−2h+1

N L (x, N, h) .

Here the function L (x, N, h) (containing the “Lambert series”)
is defined by

L (x, N, h) ≡
∞∑

n=1

nN−2h

exp (nNx)− 1
− S (x, N, h)

+
1

2
ζ (−N + 2h)− ζ (2h)

x
,

and the function S (x, N, h) is defined by

S (x, N, h) ≡ (−1)h+1

N

(
2π

x

)N−2h+1
N

...

∞∑
n=0

1

n
2h−1

N

N
2∑

k=1

f (2k − 1, x, n, N, h)

for even N , and by

S (x, N, h) ≡ (−1)h+1

N

(
2π

x

)N−2h+1
N

...

∞∑
n=0

1

n
2h−1

N

f (0, x, n, N) +

N−1
2∑

k=1

f (2k, x, n, N, h)

for odd N . The auxiliary function f (j, x, n, N, h) is defined by

f (0, x, n, N) ≡ exp (−A)

2 sinh A
,

f (j, x, n, N, h) ≡ cos (2B + C)− exp (−2A) cos C

cosh 2A− cos 2B

for integer j ≥ 1, and in these expressions

A ≡ π
N

√
2πn

x
cos

πj

2N
,

B ≡ π
N

√
2πn

x
sin

πj

2N
,

59

and C ≡ πj
2

2h−1
N

.
Practical calculations using this formula are of the same

asymptotic complexity as Borwein’s method above. (It is not
clear whether this method has a significant computational ad-
vantage.) The value of x can be chosen at will, so we should
find such x as to minimize the cost of computation. There are
two series to be computed: the terms in the first one decay as
exp
(
−nNx

)
while the terms in the second one (containing f)

decay only as

exp (−2A) ∼ exp

(
−2π

N

√
2πn

x

)
.

Also, there are about N copies of the second series. Clearly, a
very small value should be chosen for x so that the second series
converges somewhat faster.

For a target precision of P decimal digits, the required num-
bers of terms n1, n2 for the first and the second series can be

estimated as n1 ≈ N
√

P ln 10
x

, n2 ≈ x
2π

(
P ln 10

2π

)N
. (Here we as-

sume that N , the denominator of the fraction p
N

, is at least 10.
This scheme is impractical for very large N because it requires
to add O (N) slightly different variants of the second series.)
The total cost is proportional to the time it takes to compute
exp (x) or cos x and to roughly n1 + Nn2. The value of x that
minimizes this cost function is approximately

x ≈ 2π

N2

(
2π

P ln 10

)N−1

.

With this choice, the asymptotic total cost is O (PM (P)).

6.5 Lambert’s W function

Lambert’s W function is (a multiple-valued, complex function)
defined for any (complex) z by W (z) exp (W (z)) = z. This
function is sometimes useful to represent solutions of transcen-
dental equations or integrals.

Asymptotics of Lambert’s W function are

W

(
z2−2

2

e

)
= −1 + z − z3

3
+

11

72
z4 − ...

(this is only good really close to z=0); W (x) = x−x2 + 3
2
x3− ...

(this is good very near x=0);

W (x) = ln x− ln ln x +
ln ln x

ln x
+

1

2

(
ln ln x

ln x

)2

+ ...

(good for very large x but it is not straightforward to find higher
terms!).

Here are some inequalities to help estimate W (x) at large x
(more exactly, for x > e):

ln
x

ln x
< W (x) < ln x,

ln
x

ln x− 1
< W (x) < ln

x

ln x− 1
+ 0.13.

One can also find uniform rational approximations, e.g.:

W (x) ≈ ln (1 + x)

(
1− ln (1 + ln (1 + x))

2 + ln (1 + x)

)
(uniformly good for x > 0, relative error not more than 10−2);
and

W (x) ≈ xe

1 +
(
(2ex + 2)−

1
2 − 1√

2
+ 1

e−1

)−1

(uniformly good for − 1
e

< x < 0, relative error not more than
10−3).

There exists a uniform approximation of the form

W (x) ≈ (a + L)
f − ln (1 + c ln (1 + dY)) + 2L

a + 1
2

+ L
,

where a = 2.3436, b = 0.8842, c = 0.9294, d = 0.5106, f =
−1.2133 are constants, Y ≡

√
2ex + 2 and L ≡ ln (1 + bY).

(The coefficients a, ..., f are found numerically by matching
the asymptotics at three points x = − 1

e
, x = 0, x = ∞.) This

approximation miraculously works over the whole complex plane
within relative error at most 0.008. The behavior of this formula
at the branching points x = − 1

e
and x = ∞ correctly mimics

W (x) if the branch cuts of the square root and of the logarithm
are chosen appropriately (e.g. the common branch cut along
the negative real semiaxis).

The numerical procedure uses Halley’s method. Halley’s it-
eration for the equation W exp (W) = x can be written as

W ′ = W − W − x exp (−W)

W + 1− W+2
W+1

W−x exp(−W)
2

.

It has cubic convergence for any initial value W > − exp (−1).
The initial value is computed using one of the uniform approx-

imation formulae. The good precision of the uniform approxi-
mation guarantees rapid convergence of the iteration scheme to
the correct root of the equation, even for complex arguments x.

6.6 Bessel functions

Bessel functions are a family of special functions solving the
equation

d2

dx2
w (x) +

1

x

(
d

dx
w (x)

)
+

(
1− n2

x2

)
w (x) = 0.

There are two linearly independent solutions which can be
taken as the pair of Hankel functions H1 (n, x), H2 (n, x), or
as the pair of Bessel-Weber functions Jn, Yn. These pairs
are linearly related, Jn = 1

2
(H1 (n, x) + H2 (n, x)), Jn =

1
2ı

(H1 (n, x)−H2 (n, x)). The function H2 (n, x) is the com-
plex conjugate of H1 (n, x). This arrangement of four functions
is very similar to the relation between sin x, cos x and exp (ıx),

exp (−ıx), which are all solutions of d2

dx2 f (x) + f (x) = 0.
For large values of |x|, there is the following asymptotic series:

H1 (n, x) ∼
√

2

πx
exp (ıζ)

∞∑
k=0

ık
A (k, n)

xk
,

where ζ ≡ x− 1
2
nπ − 1

4
π and

A (k, n) ≡
(
4n2 − 12

) (
4n2 − 32

)
...
(
4n2 − (2k − 1)2

)
k! · 8k

.

From this one can find the asymptotic series
for Jn ∼

√
2

πx
cos ζ

∑∞
k=0

(−1)k A (2k, n) x−2k −√
2

πx
sin ζ

∑∞
k=0

(−1)k A (2k + 1, n) x−2k−1 and

Yn ∼
√

2
πx

sin ζ
∑∞

k=0
(−1)k A (2k, n) x−2k +√

2
πx

cos ζ
∑∞

k=0
(−1)k A (2k + 1, n) x−2k−1.

The error of a truncated asymptotic series is not larger than
the first discarded term if the number of terms is larger than
n− 1

2
. (See the book [Olver 1974] for derivations. It seems that

each asymptotic series requires special treatment and yet in all
cases the error is about the same as the first discarded term.)

60

Currently Yacas can compute BesselJ(n,x) for all x where n
is an integer and for |x| ≤ 2Γ (n) when n is a real number. Yacas
currently uses the Taylor series when |x| ≤ 2Γ (n) to compute
the numerical value:

Jn (x) ≡
∞∑

k=0

(−1)k x2k+n

22k+nk!Γ (k + n + 1)
.

If |x| > 2Γ (n) and n is an integer, then Yacas uses the forward
recurrence relation:

Jn (x) ≡ 2
n + 1

x
Jn+1 (x)− Jn+2 (x)

until the given BesselJ function is represented in terms of higher
order terms which all satisfy |x| ≤ 2Γ (n). Note that when n is
much smaller than x, this algorithm is quite slow because the
number of Bessel function evaluations grows like 2i, where i is
the number of times the recurrence identity is used.

We see from the definition that when |x| ≤ 2Γ (n), the ab-
solute value of each term is always decreasing (which is called
absolutely monotonely decreasing). From this we know that if
we stop after i iterations, the error will be bounded by the ab-
solute value of the next term. So given a set precision, turn
this into a value ε, so that we can check if the current term will
contribute to the sum at the prescribed precision. Before doing
this, Yacas currently increases the precision by 20% to do interim
calculations. This is a heuristic that works, it is not backed by
theory. The value ε is given by ε ≡ 5 · 10−prec, where prec was
the previous precision. This is directly from the definition of
floating point number which is correct to prec digits: A num-
ber correct to prec digits has a rounding error no greater than
5 · 10−prec. Beware that some books incorrectly have .5 instead
of 5.

Bug: Something is not right with complex numbers, but pure
imaginary are OK.

6.7 Bernoulli numbers and polyno-
mials

The Bernoulli numbers Bn are rational numbers that are fre-
quently used in applications. The first few numbers are B0 = 1,
B1 = − 1

2
, B2 = 4, B3 = 0, B4 = − 1

30
. The numbers Bn can

be defined by the series expansion of the following generating
function,

z

ez − 1
=

∞∑
n=0

Bn
zn

n!
.

The Bernoulli polynomials B (x)n are defined similarly by

z exp (zx)

ez − 1
=

∞∑
n=0

B (x)n

zn

n!
.

The Bernoulli polynomials are related to Bernoulli numbers by

B (x)n =

n∑
k=0

(
n

k

)
xkBn−k,

where
(

n
k

)
are binomial coefficients.

Bernoulli numbers and polynomials are used in various Taylor
series expansions, in the Euler-Maclauren series resummation
formula, in Riemann’s Zeta function and so on. For example,
the sum of (integer) p-th powers of consecutive integers is given
by

n−1∑
k=0

kp =
B (n)p+1 −Bp+1

p + 1
.

The Bernoulli polynomials B (x)n can be found by first com-
puting an array of Bernoulli numbers up to Bn and then apply-
ing the above formula for the coefficients.

We consider two distinct computational tasks: evaluate a
Bernoulli number exactly as a rational, or find it approximately
to a specified floating-point precision. There are also two pos-
sible problem settings: either we need to evaluate all Bernoulli
numbers Bn up to some n (this situation occurs most often in
practice), or we only need one isolated value Bn for some large
n. Depending on how large n is, different algorithms can be
chosen in these cases.

Exact evaluation of Bernoulli numbers

In the Bernoulli() routine, Bernoulli numbers are evaluated
exactly (as rational numbers) via one of the two algorithms.
The first, simpler algorithm (BernoullliArray()) uses the re-
currence relation,

Bn = − 1

n + 1

n−1∑
k=0

Bk

(
n + 1

k

)
.

This formula requires to know the entire set of Bk with k up to
a given n to compute Bn. Therefore at large n this algorithm is
a very slow way to compute Bn if we do not need all other Bk.

Here is an estimate of the cost of BernoullliArray. Suppose
M (P) is the time needed to multiply P -digit integers. The
required number of digits P to store the numerator of Bn is
asymptotically P ∼ n ln n. At each of the n iterations we need
to multiply O (n) large rational numbers by large coefficients
and take a GCD to simplify the resulting fractions. The time
for GCD is logarithmic in P . So the complexity of this algorithm
is O

(
n2M (P) ln P

)
with P ∼ n ln n.

For large (even) values of the index n, a single Bernoulli num-
ber Bn can be computed by a more efficient procedure: the in-
teger part and the fractional part of Bn are found separately
(this method is also well explained in [Gourdon et al. 2001]).

First, by the theorem of Clausen – von Staudt, the fractional
part of (−Bn) is the same as the fractional part of the sum of
all inverse prime numbers p such that n is divisible by p−1. To
illustrate the theorem, take n = 10 with B10 = 5

66
. The number

n = 10 is divisible only by 1, 2, 5, and 10; this corresponds to
p = 2, 3, 6 and 11. Of these, 6 is not a prime. Therefore, we
exclude 6 and take the sum 1

2
+ 1

3
+ 1

11
= 61

66
. The theorem

now says that 61
66

has the same fractional part as −B10; in other
words, −B10 = i + f where i is some unknown integer and the
fractional part f is a nonnegative rational number, 0 ≤ f < 1,
which is now known to be 61

66
. Indeed −B10 = −1 + 61

66
. So one

can find the fractional part of the Bernoulli number relatively
quickly by just checking the numbers that might divide n.

Now one needs to obtain the integer part of Bn. The number
Bn is positive if n mod 4 = 2 and negative if n mod 4 = 0. One
can use Riemann’s Zeta function identity for even integer values
of the argument and compute the value ζ (n) precisely enough so
that the integer part of the Bernoulli number is determined. The
required precision is found by estimating the Bernoulli number
from the same identity in which one approximates ζ (n) = 1, i.e.

|B2n| ≈ 2
(2n)!

(2π)2n
.

To estimate the factorial of large numbers, we can use Stirling’s
asymptotic formula

ln n! ≈ ln 2πn

2
+ n ln

n

e
.

61

The result is that for large n,

|B2n| ∼ 2
(

n

πe

)2n

.

At such large values of the argument n, it is fea-
sible to use the routines Internal’ZetaNum1(n, N) or
Internal’ZetaNum2(n,N) to compute the zeta function. These
routines approximate ζ (n) by the defining series

ζ (n) ≈
N∑

k=1

1

kn
.

The remainder of the sum is of order N−n. By straightforward
algebra one obtains a lower bound on N ,

N >
n

2πe
,

for this sum to give enough precision to compute the integer
part of the Bernoulli number Bn.

For example, let us compute B20 using this method.

1. We find the fractional part, using the fact that 20 is divided
only by 1, 2, 4, 5, 10, and 20 and only 2, 3, 5, 11 are prime:

In> 1/2 + 1/3 + 1/5 + 1/11;

Out> 371/330;

This number has fractional part equal to 41/330 and it’s
the same as the fractional part of −B20. Since B20 must be
negative, this means that B20 is of the form −

(
X + 41

330

)
where X is some positive integer which we now have to find.

2. We estimate the magnitude of |B20| to find the required
precision to compute its integer part. We use the identity

|B20| =
2 · 20!

(2π)20
ζ (20) ,

Stirling’s formula

ln 20! =
ln 2π + ln 20

2
+ 20 ln

20

e
≈ 42.3,

and also the fact that ζ (20) = 1+2−20+... is approximately
equal to 1. We find that the number B20 has approximately

1 +
ln |B20|
ln 10

= 1 +
ln 2 + ln 20!− 20 ln 2π

ln 10
≈ 3.72

decimal digits before the decimal point; so a precision of 3
or 4 mantissa digits would surely be enough to compute its
integer part.

3. We now need to compute ζ (20) to 4 decimal digits. The
series

ζ (20) ≈
N∑

k=1

1

k20

will have an error of order N−20. We need this error to be
less than 10−4 and this is achieved with N > 2. Therefore
it is enough to compute the sum up to N = 2:

In> N(1+1/2^20)

Out> 1.0000009536;

4. Now we find the integer part of |B20|. This time we do
not use Stirling’s formula for the factorial but compute the
exact factorial.

In> N(2*20! /(2*Pi)^20*1.0000009536)

Out> 529.1242423667;

(Note the space after the factorial sign – it is needed for
the syntax to parse correctly.) Therefore we know that the
integer part of |B20| is 529.

5. Since B20 = −
(
X + 41

330

)
and we found that X = 529, we

obtain

In> -(529+41/330);

Out> -174611/330;

This is exactly the Bernoulli number B20.

All these steps are implemented in the routine Bernoulli1.
The function Bernoulli1Threshold() returns the smallest n
for which Bn is to be computed via this routine instead of the
recursion relation. Its current default value is 20. This value
can be set with SetBernoulli1Threshold(threshold).

The complexity of Bernoulli1 is estimated as the complex-
ity of finding all primes up to n plus the complexity of com-
puting the factorial, the power and the Zeta function. Find-
ing the prime numbers up to n by checking all potential divi-

sors up to
√

n requires O
(
n

3
2 M (ln n)

)
operations with pre-

cision O (ln n) digits. For the second step we need to evalu-
ate n!, πn and ζ (n) with precision of P = O (n ln n) digits.
The factorial is found in n short multiplications with P -digit
numbers (giving O (nP)), the power of π in ln n long multi-
plications (giving O (M (P) ln n)), and Internal’ZetaNum2(n)

(the asymptotically faster algorithm) requires O (nM (P)) oper-
ations. The Zeta function calculation dominates the total cost
because M (P) is slower than O (P). So the total complexity of
Bernoulli1 is O (nM (P)) with P ∼ n ln n.

Note that this is the cost of finding just one Bernoulli
number, as opposed to the O

(
n2M (P) ln P

)
cost of find-

ing all Bernoulli numbers up to Bn using the first algorithm
Internal’BernoulliArray. If we need a complete table of
Bernoulli numbers, then Internal’BernoulliArray is only
marginally (logarithmically) slower. So for finding complete
Bernoulli tables, Bernoulli1 is better only for very large n.

Approximate calculation of Bernoulli num-
bers

If Bernoulli numbers do not have to be found exactly but only to
a certain floating-point precision P (this is usually the case for
most numerical applications), then the situation is rather differ-
ent. First, all calculations can be performed using floating-point
numbers instead of exact rationals. This significantly speeds up
the recurrence-based algorithms.

However, the recurrence relation used in
Internal’BernoulliArray turns out to be numerically
unstable and needs to be replaced by another [Brent 1978].
Brent’s algorithm computes the Bernoulli numbers divided by
factorials, Cn ≡ B2n

(2n)!
using a (numerically stable) recurrence

relation

2Ck

(
1− 4−k

)
=

2k − 1

4k (2k)!
−

k−1∑
j=1

Ck−j

4j (2j)!
.

The numerical instability of the usual recurrence relation

k−1∑
j=0

Ck−j

(2j + 1)!
=

k − 1
2

(2k + 1)!

and the numerical stability of Brent’s recurrence are not obvi-
ous. Here is one way to demonstrate them. Consider the usual
recurrence (above). For large k, the number Ck is approxi-
mately Ck ≈ 2 (−1)k (2π)−2k. Suppose we use this recurrence

62

to compute Ck from previously found values Ck−1, Ck−2, etc.
and suppose that we have small relative errors ek of finding Ck.
Then instead of the correct Ck we use Ck (1 + ek) in the recur-
rence. Now we can derive a relation for the error sequence ek

using the approximate values of Ck. It will be a linear recurrence
of the form

k−1∑
j=0

(−1)k−j ek−j
(2π)2j

(2j + 1)!
=

k − 1
2

(2k + 1)!
(2π)−2k .

Note that the coefficients for j > 5 are very small but the coef-
ficients for 0 ≤ j ≤ 5 are of order 1. This means that we have a
cancellation in the first 5 or so terms that produces a very small
number Ck and this may lead to a loss of numerical precision.
To investigate this loss, we find eigenvalues of the sequence ek,
i.e. we assume that ek = λk and find λ. If |λ| > 1, then a small
initial error e1 will grow by a power of λ on each iteration and
it would indicate a numerical instability.

The eigenvalue of the sequence ek can be found approximately
for large k if we notice that the recurrence relation for ek is
similar to the truncated Taylor series for sin x. Substituting
ek = λk into it and disregarding a very small number (2π)−2k

on the right hand side, we find

k−1∑
j=0

(−λ)k−j (2π)2j

(2j + 1)!
≈ λk sin

2π√
λ
≈ 0,

which means that λ = 4 is a solution. Therefore the recurrence
is unstable.

By a very similar calculation one finds that the inverse powers
of 4 in Brent’s recurrence make the largest eigenvalue of the error
sequence ek almost equal to 1 and therefore the recurrence is
stable. Brent gives the relative error in the computed Ck as
O
(
k2
)

times the round-off error in the last digit of precision.

The complexity of Brent’s method is given as
O
(
n2P + nM (P)

)
for finding all Bernoulli numbers up

to Bn with precision P digits. This computation time can be
achieved if we compute the inverse factorials and powers of 4
approximately by floating-point routines that know how much
precision is needed for each term in the recurrence relation.
The final long multiplication by (2k)! computed to precision P
adds M (P) to each Bernoulli number.

The non-iterative method using the Zeta function does not
perform much better if a Bernoulli number Bn has to be com-
puted with significantly fewer digits P than the full O (n ln n)
digits needed to represent the integer part of Bn. (The fractional
part of Bn can always be computed relatively quickly.) The Zeta

function needs 10
P
n terms, so its complexity is O

(
10

P
n M (P)

)
(here by assumption P is not very large so 10

P
n < n

2πe
; if

n > P we can disregard the power of 10 in the complexity
formula). We should also add O (ln nM (P)) needed to com-
pute the power of 2π. The total complexity of Bernoulli1 is

therefore O
(
ln nM (P) + 10

P
n M (P)

)
.

If only one Bernoulli number is required, then Bernoulli1 is
always faster. If all Bernoulli numbers up to a given n are
required, then Brent’s recurrence is faster for certain (small
enough) n.

Currently Brent’s recurrence is implemented as
Internal’BernoulliArray1() but it is not used by Bernoulli

because the internal arithmetic is not yet able to correctly
compute with floating-point precision.

6.8 Error function erf x and related
functions

The error function erf z is defined for any (complex) z by

erf z ≡ 2√
π

∫ z

0

exp
(
−t2
)

dt.

The complementary error function erfc x is defined for real x
as

erfc x ≡ 2√
π

∫ ∞

x

exp
(
−t2
)

dt = 1− erf x.

The imaginary error function Erfi (x) is defined for real x as

Erfi (x) ≡ 2√
π

∫ ∞

x

exp
(
t2
)

dt.

Numerical computation of the error function erf z needs to
be performed by different methods depending on the value of
z and its position in the complex plane, and on the required
precision. We follow the book [Tsimring 1988] and the pa-
per [Thacher 1963]. (These texts, however, do not describe
arbitrary-precision computations.)

The function erf z has the following approximations that are
useful for its numerical computation:

1. The Taylor series at z = 0,

√
π

2z
erf z = 1− z2

3
+

z4

2! · 5 − ... +

(
−z2

)n

(2n + 1) n!
+ O

(
z2n+1

)
2. The Taylor series for a slightly modified function,

√
π

2

ez2

z
erf z = 1 +

2z2

3
+ ... +

(
2z2
)n

(2n + 1)!!
+ O

(
z2n+1

)
.

3. Asymptotic expansion of erfc z at z = ∞:

erfc z =
e−z2

z
√

π

(
1− 1

2z2
+ ... +

(2n− 1)!!

(−2z2)n + ...

)
.

4. Continued fraction expansion due to Laplace:

√
π

2
zez2

erfc z =
z

z +
1
2

z+ 1

z+
3
2

z+...

The continued fraction in the RHS of the above equation
can be rewritten equivalently as

1

1 + v

1+ 2v

1+ 3v
1+...

if we define v ≡
(
2z2
)−1

.

Here we shall analyze the convergence and precision of these
methods. We need to choose a good method to compute erf z
with (relative) precision P decimal digits for a given (complex)
number z, and to obtain estimates for the necessary number of
terms to take.

Both Taylor series converge absolutely for all z, but they do
not converge uniformly fast; in fact these series are not very
useful for large z because a very large number of slowly decreas-
ing terms gives a significant contribution to the result, and the
round-off error (especially for the first series with the alternating
signs) becomes too high. Both series converge well for |z| < 1.

63

Consider method 1 (the first Taylor series). We shall use
the method 1 only for |z| ≤ 1. If the absolute error of the
truncated Taylor series is estimated as the first discarded term,
the precision after taking all terms up to and including z2n is

approximately z2n+2

(n+2)!
. The factorial can be approximated by

Stirling’s formula, n! ≈ nne−n. The value of erf z at small z
is of order 1, so we can take the absolute error to be equal to
the relative error of the series that starts with 1. Therefore,
to obtain P decimal digits of precision, we need the number of
terms n that satisfies the inequality∣∣∣∣e z2

n + 1

∣∣∣∣n+1

< 10−P .

(We have substituted n + 1 instead of n + 2 which made the
inequality stronger.) The error will be greatest when |z| = 1.
For these values of z, the above inequality is satisfied when
n > 1+exp

(
1 + W

(
P ln 10

e

))
where W is Lambert’s W function.

Consider method 3 (the asymptotic series). Due to limita-
tions of the asymptotic series, we shall use the method 3 only
for large enough values of z and small enough precision.

There are two important cases when calculating erf z for large
(complex) z: the case of z2 > 0 and the case of z2 < 0. In the
first case (e.g. a real z), the function erf z is approximately 1 for
large |z| (if Re (z) > 0, and approximately −1 if Re (z) < 0). In
the second case (e.g. pure imaginary z = ıt) the function erf z

rapidly grows as
exp(−z2)

z
at large |z|.

64

Chapter 7

References

[Abramowitz et al. 1964] M. Abramowitz and I. A. Stegun,
Handbook of Mathematical Functions, National Bureau of Stan-
dards, Washington, D.C., 1964.

[Ahlgren et al. 2001] S. Ahlgren and K. Ono, Addition and
counting: the arithmetic of partitions, Notices of the AMS 48
(2001), p. 978.

[Bailey et al. 1997] D. H. Bailey, P. B. Borwein, and S.
Plouffe, On The Rapid Computation of Various Polylogarithmic
Constants, Math. Comp. 66 (1997), p. 903.

[Bateman et al. 1953] Bateman and Erdelyi, Higher Tran-
scendental Functions, McGraw-Hill, 1953.

[Beeler et al. 1972] M. Beeler, R. W. Gosper, and R. Schroep-
pel, Memo No. 239, MIT AI Lab (1972), now available online
(the so-called “Hacker’s Memo” or “HAKMEM”).

[Borwein 1995] P. Borwein, An efficient algorithm for Rie-
mann Zeta function (1995), published online and in Canadian
Math. Soc. Conf. Proc., 27 (2000), pp. 29-34.

[Borwein et al. 1999] J. M. Borwein, D. M. Bradley, R. E.
Crandall, Computation strategies for the Riemann Zeta func-
tion, online preprint CECM-98-118 (1999).

[Brent 1975] R. P. Brent, Multiple-precision zero-finding
methods and the complexity of elementary function evaluation,
in Analytic Computational Complexity, ed. by J. F. Traub, Aca-
demic Press, 1975, p. 151; also available online from Oxford
Computing Laboratory, as the paper rpb028.

[Brent 1976] R. P. Brent, The complexity of multiple-precision
arithmetic, Complexity of Computation Problem Solving, 1976;
R. P. Brent, Fast multiple-precision evaluation of elementary
functions, Journal of the ACM 23 (1976), p. 242.

[Brent 1978] R. P. Brent, A Fortran Multiple-Precision Arith-
metic Package, ACM TOMS 4, no. 1 (1978), p. 57.

[Brent et al. 1980] R. P. Brent and E. M. McMillan, Some new
algorithms for high precision computation of Euler’s constant,
Math. Comp. 34 (1980), p. 305.

[Crenshaw 2000] J. W. Crenshaw, MATH Toolkit for REAL-
TIME Programming, CMP Media Inc., 2000.

[Damgard et al. 1993] I. B. Damgard, P. Landrock and C.
Pomerance, Average Case Error Estimates for the Strong Prob-
able Prime Test, Math. Comp. 61, (1993) pp. 177-194.

[Davenport et al. 1989] J. H. Davenport, Y. Siret, and E.
Tournier, Computer Algebra, systems and algorithms for alge-
braic computation, Academic Press, 1989.

[Davenport 1992] J. H. Davenport, Primality testing revisited,
Proc. ISSAC 1992, p. 123.

[Fee 1990] G. Fee, Computation of Catalan’s constant using
Ramanujan’s formula, Proc. ISSAC 1990, p. 157; ACM, 1990.

[Godfrey 2001] P. Godfrey (2001) (unpublished text):
http://winnie.fit.edu/~gabdo/gamma.txt.

[Gourdon et al. 2001] X. Gourdon and P. Sebah, The Euler
constant ; The Bernoulli numbers; The Gamma Function; The

binary splitting method ; and other essays, available online at
http://numbers.computation.free.fr/Constants/ (2001).

[Haible et al. 1998] B. Haible and T. Papanikolaou, Fast
Multiprecision Evaluation of Series of Rational Numbers, LNCS
1423 (Springer, 1998), p. 338.

[Johnson 1987] K. C. Johnson, Algorithm 650: Efficient
square root implementation on the 68000, ACM TOMS 13
(1987), p. 138.

[Kanemitsu et al. 2001] S. Kanemitsu, Y. Tanigawa, and
M. Yoshimoto, On the values of the Riemann zeta-function at
rational arguments, The Hardy-Ramanujan Journal 24 (2001),
p. 11.

[Karp et al. 1997] A. H. Karp and P. Markstein, High-
precision division and square root, ACM TOMS, vol. 23 (1997),
p. 561.

[Knuth 1973] D. E. Knuth, The art of computer programming,
Addison-Wesley, 1973.

[Lanczos 1964] C. J. Lanczos, J. SIAM of Num. Anal. Ser.
B, vol. 1, p. 86 (1964).

[Luke 1975] Y. L. Luke, Mathematical functions and their
approximations, Academic Press, N. Y., 1975.

[Olver 1974] F. W. J. Olver, Asymptotics and special func-
tions, Academic Press, 1974.

[Pollard 1978] J. Pollard, Monte Carlo methods for index com-
putation mod p, Mathematics of Computation, vol. 32 (1978),
pp. 918-924.

[Pomerance et al. 1980] Pomerance et al., Math. Comp. 35
(1980), p. 1003.

[Rabin 1980] M. O. Rabin, Probabilistic algorithm for testing
primality, J. Number Theory 12 (1980), p. 128.

[Smith 1989] D. M. Smith, Efficient multiple-precision eval-
uation of elementary functions, Math. Comp. 52 (1989), p.
131.

[Smith 2001] D. M. Smith, Algorithm 814: Fortran 90 soft-
ware for floating-point multiple precision arithmetic, Gamma
and related functions, ACM TOMS 27 (2001), p. 377.

[Spouge 1994] J. L. Spouge, J. SIAM of Num. Anal. 31
(1994), p. 931.

[Sweeney 1963] D. W. Sweeney, Math. Comp. 17 (1963), p.
170.

[Thacher 1963] H. C. Thacher, Jr., Algorithm 180, Error func-
tion for large real X, Comm. ACM 6, no. 6 (1963), p. 314.

[Tsimring 1988] Sh. E. Tsimring, Handbook of special func-
tions and definite integrals: algorithms and programs for calcu-
lators, Radio and communications (publisher), Moscow (1988)
(in Russian).

[von zur Gathen et al. 1999] J. von zur Gathen and J. Ger-
hard, Modern Computer Algebra, Cambridge University Press,
1999.

65

Chapter 8

GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330

Boston, MA, 02111-1307

USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook,
or other written document “free” in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that deriva-
tive works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for man-
uals for free software, because free software needs free docu-
mentation: a free program should come with manuals providing
the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

Applicability and Definitions

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The “Document”, below, refers
to any such manual or work. Any member of the public is a
licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work con-
taining the Document or a portion of it, either copied verbatim,
or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter
section of the Document that deals exclusively with the rela-
tionship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (For
example, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections
whose titles are designated, as being those of Invariant Sections,
in the notice that says that the Document is released under this
License.

The “Cover Texts” are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-
readable copy, represented in a format whose specification is
available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text ed-
itors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic transla-
tion to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include
plain ASCII without markup, Texinfo input format, LaTeX in-
put format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modi-
fication. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or process-
ing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page
itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title
Page” means the text near the most prominent appearance of
the work’s title, preceding the beginning of the body of the text.

Verbatim Copying

You may copy and distribute the Document in any medium,
either commercially or noncommercially, provided that this Li-
cense, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of
this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated
above, and you may publicly display copies.

66

Copying in Quantity

If you publish printed copies of the Document numbering more
than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both cov-
ers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title
of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to
fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto ad-
jacent pages.

If you publish or distribute Opaque copies of the Docu-
ment numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible
computer-network location containing a complete Transparent
copy of the Document, free of added material, which the gen-
eral network-using public has access to download anonymously
at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to
ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors
of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated
version of the Document.

Modifications

You may copy and distribute a Modified Version of the Docu-
ment under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this Li-
cense, with the Modified Version filling the role of the Docu-
ment, thus licensing distribution and modification of the Modi-
fied Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of pre-
vious versions (which should, if there were any, be listed
in the History section of the Document). You may use the
same title as a previous version if the original publisher of
that version gives permission.

2. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the prin-
cipal authors of the Document (all of its principal authors,
if it has less than five).

3. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

6. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified

Version under the terms of this License, in the form shown
in the Addendum below.

7. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document’s
license notice.

8. Include an unaltered copy of this License.

9. Preserve the section entitled “History”, and its title, and
add to it an item stating at least the title, year, new au-
thors, and publisher of the Modified Version as given on
the Title Page. If there is no section entitled “History” in
the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated
in the previous sentence.

10. Preserve the network location, if any, given in the Docu-
ment for public access to a Transparent copy of the Docu-
ment, and likewise the network locations given in the Doc-
ument for previous versions it was based on. These may be
placed in the “History” section. You may omit a network
location for a work that was published at least four years
before the Document itself, or if the original publisher of
the version it refers to gives permission.

11. In any section entitled “Acknowledgements” or “Dedica-
tions”, preserve the section’s title, and preserve in the sec-
tion all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unal-
tered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

13. Delete any section entitled “Endorsements”. Such a section
may not be included in the Modified Version.

14. Do not retitle any existing section as “Endorsements” or
to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled “Endorsements”, provided it
contains nothing but endorsements of your Modified Version by
various parties – for example, statements of peer review or that
the text has been approved by an organization as the authori-
tative definition of a standard.

You may add a passage of up to five words as a Front-Cover
Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by
this License give permission to use their names for publicity for
or to assert or imply endorsement of any Modified Version.

Combining Documents

You may combine the Document with other documents released
under this License, under the terms defined in section 4 above

67

for modified versions, provided that you include in the combina-
tion all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your com-
bined work in its license notice.

The combined work need only contain one copy of this Li-
cense, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled
“History” in the various original documents, forming one sec-
tion entitled “History”; likewise combine any sections entitled
“Acknowledgements”, and any sections entitled “Dedications”.
You must delete all sections entitled “Endorsements.”

Collections of Documents

You may make a collection consisting of the Document and other
documents released under this License, and replace the individ-
ual copies of this License in the various documents with a single
copy that is included in the collection, provided that you fol-
low the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection,
and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copy-
ing of that document.

Aggregation With Independent Works

A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume
of a storage or distribution medium, does not as a whole count
as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is
called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to
these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Doc-
ument within the aggregate. Otherwise they must appear on
covers around the whole aggregate.

Translation

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of sec-
tion 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addi-
tion to the original versions of these Invariant Sections. You
may include a translation of this License provided that you also
include the original English version of this License. In case of a
disagreement between the translation and the original English
version of this License, the original English version will prevail.

Termination

You may not copy, modify, sublicense, or distribute the Docu-
ment except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Doc-
ument is void, and will automatically terminate your rights un-
der this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

Future Revisions of This License

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either
of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by
the Free Software Foundation.

ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include
a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME. Permission is

granted to copy, distribute and/or modify this

document under the terms of the GNU Free

Documentation License, Version 1.1 or any later

version published by the Free Software Foundation;

with the Invariant Sections being LIST THEIR

TITLES, with the Front-Cover Texts being LIST, and

with the Back-Cover Texts being LIST. A copy of

the license is included in the section entitled

‘‘GNU Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant
Sections” instead of saying which ones are invariant. If you have
no Front-Cover Texts, write “no Front-Cover Texts” instead of
“Front-Cover Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program
code, we recommend releasing these examples in parallel under
your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

68

Index

AGM sequence, 37
convergence rate, 37
integral representation, 37

arbitrary-precision computation, 22
catastrophic round-off error, 24
requirements, 22
round-off error estimates, 23
speed estimates, 22
very large numbers, 25
very small numbers, 25
Yacas internal math, 24

asymptotic series, 37
estimate of precision, 37

Bernoulli numbers, 58
asymptotic, 61
by recurrence, 61

cost estimate, 61, 63
numerical stability, 62

definition, 61
fractional part of, 61
from Zeta function, 61

example, 62
Bernoulli polynomials

definition, 61
Bernoulli1, 62
Bessel functions, 60

asymptotics, 60
by recurrence relation, 61

binary splitting, 38
binomial coefficients, 51

Clausen – von Staudt, theorem of, 61
computation of arctan x, 49

by continued fraction, 50
convergence rate, 50

by Taylor series, 50
computation of π, 47

by Brent-Salamin method, 48
by Newton’s method, 48
by Ramanujan’s series, 48

continued fraction approximation
bottom-up computation, 27

estimated remainder, 27
convergence rate, 29

from generating functions, 30
error bound, 26, 29
estimating ln 2, 24
of arctan x, 29, 49, 50
of exp (x), 47
of Γ (a, z), 29
of ln x, 46
of erfc x, 29, 30

error estimate, 30
of tan x, 49
of rational numbers, 26

top-down computation, 28
derivation, 29
non-alternating signs, 28

divisors, 13
proper, 13

double factorial, 50

error function erf x
by asymptotic series, 64
by asymptotic series , 37
by Taylor series, 63
summary of methods, 63

Euler’s constant γ, 56
exponential function exp (x)

by binary reduction, 47
by continued fraction, 47
by inverse logarithm, 47
by linear reduction, 47
by Taylor series, 46
precision, 46
squaring speed-up, 47

exponentially large numbers, 25
exponentially small numbers, 25

Factor, 11
factorial, 50

by bisection method, 50
factorization of integers, 11

checking for prime powers, 11
overview of algorithms, 12
Pollard’s rho algorithm, 11
small prime factors, 11

Factors, 14

Gamma function, 51, 54
by asymptotic series, 55
by Lanczos-Spouge method, 54
by Sweeney-Brent method, 56
half-integer arguments, 54
rational arguments, 54

Gaussian integers, 13
GCD

binary Euclidean method, 10
generating function of a sequence, 30

integral representation, 30
obtaining, 30

GuessRational, 26

Halley’s method, 32
explicit formula, 32
when to use, 33

Horner’s scheme, 35

IntNthRoot, 43
IntPowerNum, 40

69

Lambert’s W function
asymptotics, 60
by Halley’s method, 60
uniform approximations, 60

logarithm
by AGM sequence, 44
by argument reduction, 45
by binary reduction, 45
by continued fraction, 46
by inverse exponential, 44
by square roots, 44
by Taylor series, 44
by transformed series, 45
choice of AGM vs. Taylor, 45
on integers, 43
precision, 44

method of steepest descent, 30
example for real x, 31

NearRational, 27
Newton’s method, 32

asymptotic cost, 34
cubic convergence, 32
higher-order schemes, 33
initial value, 32
optimal order, 34
precision control, 33

Newton-Cotes quadratures, 21
for partial intervals, 21

NextPrime, 11

orthogonal polynomials, 51
by specific formulae, 52
classical polynomials, 51
Clenshaw-Smith recurrence, 53
generating function, 51
Rodrigues formula, 51

partitions of an integer, 12
by Rademacher-Hardy-Ramanujan series, 12
by recurrence relation, 13

Plot2D’adaptive, 20
plotting

adaptive algorithms, 20
non-Euclidean coordinates, 22
of surfaces, 21
parametric, 22
three-dimensional, 21, 22
two-dimensional, 20

powers, 40
by repeated squaring, 40

improvements, 40
non-recursive, 40

modular, 40
real numbers, 41

primality testing, 10
Fermat test, 10
Miller-Rabin algorithm, 10

choosing the bases, 11
strong pseudoprimes, 11

real roots, 7
bounds on, 8
finding, 8
number of, 8

Sturm sequences, 7
variations in Sturm sequences, 8

Riemann’s Zeta function, 58
by Borwein’s algorithm, 58
by direct summation, 58
by product over primes, 59
integer arguments, 59

roots
by argument reduction, 42
by bisection algorithm, 41
by Halley’s method, 43
by higher-order methods, 43
by Newton’s method, 42

square free decomposition, 7
Stirling’s formula, 30, 32, 54, 61
sums of integer powers, 61

Taylor series, 35
O
(

3
√

N
)

method, 36
baby step/giant step method, 35
by Horner’s scheme, 35
rectangular method, 35
required number of terms, 23

70

