Fityk 0.8.5 - User's Manual

O T 0o (8 Tox o o [1

What iS the Program fOI? ... e 1

HOW 0 read thiS ManUaloiiiiiiiii e e 1

GUI WS CLI et ettt et e e e e e enaas 1

2. GEIING SEAMEA ..ottt 2
The MiNiMal EXAMPIE ... ettt e e et e e et e e enb e eens 2
INVOKING FIEYK ettt e e e e e 2
GraphiCal INEITACE ... et 3
Plots and Other WINAOWSoiiiiii e 3

IMIOUSE USBOE ...ttt ettt ettt et et et et e e e eaa s 3

S RE B ENICE .o e s 5
GENEIAl SYNMEBX ooetteeeiit ettt ettt et ettt ettt ettt e e e et e et e et e et e e enta e eee 5
Data from EXPEIIMENT ...ooeee ittt e e e e e s 5
LOBAING TEIA ...oeveneeeeii e e e et e e et e e e e een 5

Active and iNACHIVE POINESuuiiiiii e 6

Standard deviation (Or WEIGHE)ueiiiii e e e 6

Data transforMELIONSccouuuneiiiii e e ettt e et e e e e e 6

Functions and variables in data transformationccoooviiiiiiiiiiii e 8

Working with MUItiple datasatsiieiiii e 9

EXPOITING BLA ... eeeeeee ettt et e e eaaas 9

SuM Of fitted FUNCLIONS ... 10

SUM = INEFOTUCTION ..ottt e et e e e e e 10

VaaDlES ... 10

Function types and fUNCLIONSuuiiiiiiie e 11
User-defined funCtions (UDF)cooiuiiiiiiii et 12

Speed Of COMPUEBLIONSieiieie ettt eaanas 12

ST 0 T = 1o 7 13

GUESSING PEBK TOCAIION ...vteeeii e e 13

Displaying iNfOrMELIONuuiiiiiii e 14

LT (o PP PP PPPPPT 14
Nonlinear OPtIMIZALIONiiiiii e 14

Fitting related COMMENGASiiiiiiiie e e ena e 15
Levenberg-Marquardtoioiiiii e 16
Nelder-Mead downhill sSimplex methodooviiiiiiiiii e 16

GeNEtic ALGONTTNIMSi e e 17

S 1110 TP PPPPTTRPPPIN 17
Other COMIMANOS ...ttt ettt e et et e e et et e e e e et e e e eeba e eeeees 18

PIOL: VIEWING TBEAL ... eeeve ettt e e et e e et e e e et e e e era e eees 18

iNfO: SNOW INFOMMIBLTON ...t 18
commands, dump, sleep, reSEt, QUIToiien i 19

4. USING 8N EXIENING .. eeitneiiii ettt ettt e e e e e e eee 20
USE CBSES .. tttettt ettt ettt ettt ettt e ettt et ettt et et e e e e 20
EXEENSIONS ...ttt et 20

How to add your own built-in functioncooooiiii e, 20

AL LISt OF FUNCHIONS ...ttt e et e e 23
B. ComMMaNd SNOMENMINGSceeetieeeit ettt et e e et e et ab e e e e et e e eraa s 25
O I = 01 = PP UUPPPTRUUPPPTRUPPPPN 26
D. ADOUL thiS MBNUBLcoiiiiiiit e e et e ettt e e e et e e e et e eeees 27
=] ol oo = o] VAP P PP TSUPPTRN 28

Chapter 1. Introduction

What is the program for?

Fityk is a program for nonlinear fitting of analytical functions (especialy peak-shaped) to data (usually
experimental data). The most concise description: peak fitting software. There are also people using it to
remove the baseline from data, or to display data only.

It is reportedly used in crystalography, chromatography, photoluminescence and photoelectron
spectroscopy, infrared and Raman spectroscopy, to name but a few. Although the author has a general
understanding only of experimental methods other than powder diffraction, he would like to make it useful
to as many people as possible.

Fityk offers various nonlinear fitting methods, simple background subtraction and other manipulations to
the dataset, easy placement of peaks and changing of peak parameters, support for analysis of series of
datasets, automation of common tasks with scripts, and much more. The main advantage of the program
is flexibility - parameters of peaks can be arbitrarily bound to each other, e.g. the width of a peak can be
an independent variable, the same as the width of another peak, or can be given by complex (and genera
for all peaks) formula.

Fityk is free software; you can redistribute and modify it under the terms of the GPL, version
2. See Appendix C, License for details. You can download the latest version of fityk from http:/
www.unipress.waw.pl/fityk. or http://fityk.sf.net. To contact the author, visit the same page.

How to read this manual

After thisintroduction, you may read the Chapter 2, Getting started. If you are using the GUI version you can
look at the screenshots-based tutorial [http://www.unipress.waw.pl/fityk/screenshots.html] (in preparation)
and postpone reading Chapter 3, Reference until you need to write a script, put constraints on variables, add
user-defined function or understand better how the program works.

In case you are not familiar with the term weighted sum of squared residuals or you are not sure how it is
weighted, have alook at the section called “Nonlinear optimization ”. Remember that you must set correctly
standard deviations of y's of points, otherwise you will get wrong results.

GUI vs CLI

The program comes in two versions: the GUI (Graphical User Interface) version - more comfortable for
most users, and the CLI (Command Line Interface) version (named cfityk to differentiate, Unix only).

If the CLI version was compiled withthe GNU Readl i ne Li br ary, command line editing and command
history as per bash will be available. Especialy useful is TAB-expanding. Dataand curvesfitted to dataare
visualized with gnuplot (if it isinstalled).

The GUI version iswritten using the wxW dget s [http://www.wxwidgets.org] library and can be run on
Unix species with GTK+ and on MS Windows. There are also people using it on MacOS X (have alook at
the fityk-users mailing list archives for details).

http://www.unipress.waw.pl/fityk
http://www.unipress.waw.pl/fityk
http://fityk.sf.net
http://www.unipress.waw.pl/fityk/screenshots.html
http://www.unipress.waw.pl/fityk/screenshots.html
http://www.wxwidgets.org
http://www.wxwidgets.org

Chapter 2. Getting started

The minimal example

Let usanalyze adiffraction pattern of NaCl. Our goal isto determine the position of the center of the highest
peak. It is needed for calculating the pressure under which the sample was measured, but this later detail in
the processing isirrelevent for the time being.

Thedatafile usedin thisexampleisdistributed with the program and can befoundinthesanpl es directory.

First load datafromfilenacl 01. dat . You candothisby typing @ < nacl 01. dat intheCLI version
(or in the GUI version in the input box - at the bottom, just above the status bar). In the GUI, you can also
select Data # Load File from the menu and choose the appropriate file.

If you use the GUI, you can zoom-in to the biggest peak using left mouse button on the auxiliary plot (the
plot below the main plot). To zoom out, press the View whole toolbar button. Other ways of zooming are
described in the section called “Mouse usage”. If you want the data to be drawn with larger points or aline,
or if you want to change the color of the line or background, press right mouse button on the main plot
and use Data point size or Color menu from the pop-up menu. To change the color of data points, use the
right-hand panel.

Now all data points are active. Because only the biggest peak is of interest for the sake of this example, the
remaining points can be deactivated. Type: a = (23.0 < x < 26.0) or change to range mode
(press Data-Range Maode button on toolbar) and select range to be deactivated with right mouse button.

As our example data has no background to worry about, our next step is to define a peak with reasonable
initial values and fit it to the data. We will use Gaussian. To see its formula, type: i nf o Gaussi an or
look for it in the documentation (in Appendix A, List of functions). Incidentally, most of the commands can
be abbreviated, e.g. you cantype:i Gaussi an.

To define peak, type: % = Gaussi an(~60000, ~24.6, ~0.2); F = % or% = guess
Gaussi an or select Gaussian from thelist of functions on the toolbar and pressthe auto-add toolbar button.
There are also other ways to add peak in GUI such as add-peak mode. These mouse-driven ways give
function anamelike % 1, % 2, etc.

Now let usfit the function. Type: f i t or select Fit # Run from the menu (or press the toolbar button).

When fitting, the weighted sum of squared residuals (see the section called “Nonlinear optimization ") is
being minimized.

The default weights of points are not equal.

To see the peak parameters, type: i nf o+ %p or (in the GUI) move the cursor to the top of the peak and
try out the context menu (right button), or use the right-hand panel.

That'sit! To do the same a second time (for example to a similar data set) you can write all the commands
to file (you can do it now using command commands > f i | enane), and use it as script: commands <
nacl 01. fit or select Session # Execute script from menu, or run program with the name of the script:
bash$ fityk nacl01l.fit

Invoking fityk

On startup, the program executes a script from the $HOVE/ . fi t yk/init file (on MS Windows XP:
C.\ Docunents and Settings\ USERNAME\ . fi t yk\i ni t). Followingthis, the program executes
command passed with --cmd option, if given, and processes command line arguments:

« if theargument startswith "=->", string following =-> isregarded as acommand and executed (otherwise,
it isregarded as afilename).

« if the filename has extension ".fit" or the file begins with a "# Fityk" string, it is assumed to be a script
and is executed.

Getting started

 otherwise, it isassumed to be adatafile and isloaded. It is possible to specify columnsin datafilein this
way:file.xy: 1, 4. Multipley columnscan bespecified(fil e. xy: 1,3/ 4/50rfile.xy: 1, 3-
5) - it will load each y column as a separate dataset, with the same values of x.

There are also other parameters to the CLI and GUI versions of the program. Option "-h" gives the full
listing.

woj dyr @bu: ~/fityk/src$./fityk --help
Usage: fityk [-h] [-V] [-c <str>] [-1] [-r] [script or data file...]

-h, --help show this hel p nessage

-V, --version out put version information and exit
-c, --cnd=<str> script passed in as string

-g, --config=<str> choose QU configuration

-1, --no-init don't process $HOME/ .fityk/init file
-r, --reorder reorder data (50.xy before 100. xy)

The example of non-interactive using CLI version on Linux:

woj dyr @bu: ~/ foo$ cfityk -h
Usage: cfityk [-h] [-V] [-c <str>] [script or data file...]

-h, --help show this hel p nessage

-V, --version out put version information and exit
-c, --cnd=<str> script passed in as string

-1, --no-init don't process $HOME/ .fityk/init file
-q, --quit don't enter interactive shell

woj dyr @bu: ~/ foo$ I's *.rdf

dat _a.rdf dat_r.rdf out.rdf

woj dyr @bu: ~/foo$ cfityk -q -1 "=-> set verbosity=quiet, autoplot=never" \
> * rdf "=->i+nmn(xify>0) in@"

in @ dat_a: 1.8875

in @ dat_r: 1.5105

in @ out: 1.8305

Graphical interface

Plots and other windows

The GUI window of fityk consists of (from the top): menu bar, toolbar, main plot, auxiliary plot, output
window, input field, status bar and of sidebar at right-hand side. The input field allows you to type and
execute commandsin asimilar way asisdoneinthe CLI version. The output window (whichisconfigurable
through a pop-up menu) shows the results. Incidentally, all GUI commands are converted into text and are
visible in the output window, providing asimple way to learn the syntax.

The main plot can display data points, functions and/or the sum of al functions. Use the pop-up menu (click
right button on the plot) to configureit. Some properties of the plot (e.g. colors of datapoints) can be changed
using the sidebar.

One of the most useful things which can be displayed by the auxiliary plot isthe difference between the data
and the sum of functions. (also controlled by a pop-up menu). Hopefully, a quick look at this menu and a
minute or two's worth of experiments will show the potentia of this auxiliary plot.

Configuration of the GUI (visiblewindows, colors, etc.) can be saved using GUI # Save current config. Two
different configurations can be saved, which allows easy changing of colorsfor printing. On Unix platforms,
these configurations are stored in afile in the user's home directory. On Windows - they are stored in the
registry (perhaps in the future they will also be stored in afile).

Mouse usage

The usage of the mouse on menu, dialog windows, input field and output window is (hopefully) intuitive,
so the only remaining topic to be discussed hereis how to effectively use the mouse on plots.

Getting started

Let us start with the auxiliary plot. The right button displays a pop-up menu with a range of options, while
the left allows you to select the range to be displayed on the x-axis. Clicking with the middle button (or with
left button and Shift pressed simultaneously) will zoom out to display al data.

On the main plot, the meaning of the left and right mouse button depends on current mode (selected using
either the toolbar or menu). There are hints on the status bar. In norma mode, the left button is used for
zooming and the right invokes the pop-up menu. The same behaviour can be obtained in any mode by
pressing Ctrl (or Alt.). The middle button can be used to select arectangle that you want to zoom into. If an
operation hastwo steps, such asrectangle zooming (i.e. first you press abutton to select thefirst corner, then
move the mouse and release the button to select the second corner of the rectangle), this can be cancelled
by pressing another button when the first oneis pressed.

Chapter 3. Reference

General syntax

Basically, there is one command per line. If for some reason it is more comfortable to place more than one
command on one ling, they can be separated with a semicolon (;).

Most of the commands can have arguments separated by acomma. (,), e.g. delete % a, %b, %c.

Most of the commands can be shortened: e.g. you can type inf or in or i instead of info. See Appendix B,
Command shortenings for details.

The symbol '# starts acomment - everything from the hash (#) to the end of the line isignored.
Data from experiment

Loading data

Thebasic fileformat is ascii text file with every line corresponding to one data point. If there are more than
two columns of numbers, it can be specified which columns corresponds to x and y, and, optionally, also
sigma. Numbersin line can be separated by whitespace, commas or semicolons. Lines that can't be read as
numbers are ignored.

The modified version of xyl i b library is used to read data from file. New formats can be easily added.
Points are loaded from files using the command
dat asl ot <fil enane [:xcol :ycol :scol :bl ock][fil etype options...]

where dat asl ot should be replaced with @), unless many datasets are to be used simultaneously (for
details see: the section called “Working with multiple datasets’), f i | et ype and opt i ons usualy can
be omitted (in most of the cases the filetype can be detected automatically, all supported filetypes are listed
at the end of this section), xcol , ycol , scol (supported only in text file) are columns corresponding to
X, y and std. dev. of y. A column number of O generates a number increasing (from zero) with each point.
bl ock is supported by formats with multiple blocks of data.

If the filename contains blank characters, a semicolon or comma, it should be put inside single quotation
marks (together with colon-separated indices, if any).

Multiple y columns and/or blocks can be specified, see the examples below.

foo.vns
foo. fi
foo. dat:

ext first-line-header

X,y - 1lst and 4th col ums

f oo. dat: 4:: # load two dataset (with y in colums 3, 4)
.5:: # load three dataset (with y in colums 3,4,5)
foo. dat: .6,2:: # load four dataset (y: 4,5,6,2)

2
foo. dat: 3: # read std. dev. of y from3rd colum
foo. dat: #x-0,1,2,..., y - first colum
foo.raw :::0,1 # load two first blocks of data (as one dataset)

tex
1: 4
1:3
foo.dat: 1: 3.
1: 4
1:2:
0:1:

888888888

Supported filetypes

text ASCII format. If option first-line-header is given, the first line isread astitle.
dbws format used by DBWS (program for Rietveld analysis) and DMPLOT.

cpi Sietronics Sieray CPI format

uxd Siemens/Bruker UXD format (powder diffraction data)

Reference

bruker_raw Simens-Bruker RAW format (version 1,2,3)

canberra_mca Spectral data stored by Canberra MCA systems

rigaku_dat Rigaku dat format (powder diffraction data)

vamas VAMAS I1S0O-14976 (only experiment modes. "SEM" or "MAPSV" or "MAPSVDP"
and only "REGULAR" scan mode are supported)

philips_udf Philips UDF (powder diffraction data)

philips_rd Philips RD raw scan format V3 (powder diffraction data)

spe Princeton Instruments WinSpec SPE format (only 1-D datais supported)

pdcif CIF for powder diffraction

what else would you like to have here?

Information about |oaded data can be obtained with: info data in dat asl ot
Active and inactive points

We often have the situation that only a part of the data from afile is of interest. We should be able to
exclude selected points from fitting and all computations. Every point can be either active or inactive. This
can be done with the command A=... (see the section called “Data transformations’ for details) or with a
mouse-click in the GUI. The idea of active and inactive pointsis simple: only the active ones are subject to
fitting and peak-finding, inactive ones are neglected in these cases.

Standard deviation (or weight)

When fitting data, we assume that only the y coordinate is subject to statistical errorsin measurement. This
is a common assumption. To see how the y standard deviation « influences fitting (optimization), look at
the weighted sum of squared residuals formulain the section called “Nonlinear optimization”. We can also

think about weights of points - every point has aweight assigned, that is equal i = 1/o}

Standard deviation of points can be read from file together with the x and y coordinates. Otherwise, it is set
either to max(sqrt(y), 1.0) or to 1, depending on the value of dat a- def aul t - si g option. Setting std.
dev. asasguareroot of the valueiscommon and hastheoretical ground wheny isthe number of independent
events. Y ou can always change standard deviation, e.g. make it equal for every point with command: S=1.
See the section called “ Data transformations” for details.

Y ou can not set data errors (standard deviations) as unknown.

Data transformations

Every data point has four properties: x coordinate, y coordinate, standard deviation of y and active/inactive
flag. Lower case letters X, vy, s, a stand for these properties before transformation, and upper case X, Y, S,
A for the same properties after transformation. M stands for the number of points. Data can be transformed
using assignments. Command Y=- y will change the sign of the y coordinate of every point. You can aso
apply transformation to selected points: Y[3] =1. 2 will change point with index 3 (which is 4th point,
because first has index 0), and Y[3. . . 6] =1. 2 will do the same for points with indices 3, 4, 5, but not
6. Y[2...]=1. 2 will apply the transformation to points with index 2 and above. You can guess what
Y[...6]=1. 2 does. Most of operations are executed sequentially for points from thefirst to the last one.
n stands for the index of currently transformed point. The sequance of commands: M=500; x=n/ 100;
y=si n(x) will generate the sinusoid dataset with 500 points.

If you have more than one dataset, you have to specify explicitly which dataset transformation applies to.
See the section called “Working with multiple datasets” for details.

Reference

Points are kept sorted according to their x coordinate, so changing x coordinate of points will also
change the order and indices of points.

Expressions can contain real numbers in normal or scientific format (e.g. 1.23e5), constant pi , binary
operators. +, -, *, /, *, one argument functions: sqrt, exp, | 0g10, I n, si n, cos, t an, si nh, cosh,
t anh, at an, asi n, acos, erf, erfc, gamm, | ganmma (=In(jgamma))), abs, r ound (rounds to the
nearest integer), two argument functions: m n2, max2 (e.g. max2(3, 5) will give5),r anduni f or n{ a,
b) (random number from interva (a, b)), randnor mal (mu, si gna) (random number from normal
distribution), voi gt (a, b) (see below) and ternary ?: operator: condi ti on ? expressionl :
expr essi on2, which performs expr essi onl if condition is true and expr essi on2 otherwise.
Conditions can be built using boolean operators and comparisions. AND, OR, NOT, >, >=, <, <=, ==, I=
(or <>), TRUE, FALSE.

— b +E‘GH\13 —12)
Thevoi gt function above has formula: m:gr‘{a,b) J co B H{a—t)? it

Thevalue of adata expression can be shown using the command info, see examples at the end of this section.

t [x=expr essi on], wheret =x,y,5,aX,Y,S,A gives alinear interpolation of t between two points (or
the value of first/last point if the given x is outside the current data range).

All operations are performed on real numbers.

Two numbersthat differ lessthan epsi | oni.e. abs(a-b)<epsi | on, are considered equal. Indicesareaso
computed in real number domain, and then rounded to the nearest integer.

Transformations can be joined with comma (,), e.g. X=y, Y=X swaps axes.

Before and after executing transformations, points are always sorted according to their x coordinate. You
can change the order of points using order=t , wheret isoneof X, y, s, &, -X, -y, -S, -a Clearly, this only
makes sense for a sequence of transformations (joined with comma) as after finishing each transformation,
points will be reordered again.

Points can be deleted using the following syntax: delete]li ndex- or - r ange] or delete(condi ti on) and
created simply by increasing value of M.

There are two parametrized functions. spline and interpol ate. The genera syntax is
par anet ri zedf unc [par anl, par an?](expr essi on) eg. spline[22.1, 37.9, 48.1,

17.2, 93.0, 20.7](x) will givethevalueof acubic splineinterpolation through points (22.1, 37.9),
(48.1, 17.2), ... in x. Function interpolation is similar, but gives a polyline interpolation. Spline function is
used for manual background substraction via the GUI.

There are also aggragate functions: ni n, max, sum avg, st ddev, dar ea. They have two forms. In
the smpler one: aggr agat ef unc (expr essi on), the value of expression in brackets is calculated for
all points. m n gives the smallest value, max the largest, sum avg and st ddev give the sum of al
values, arithmetic mean and standard deviation, respectively. True value in data expression is represented
numericaly by 1., and false by 0, so sumcan be aso used to count points that fulfil given criteria.

dar ea gives the sum of expressions calculated using formulae: t* (x[n+1]-x[n-1])/2, where t is the value
of the expression in brackets. dar ea(y) givesthe areaunder interpolated data points, and can be used to
normalize the area.

The second form: aggr agat ef unc (expr essi on if condi t i on) takes into account only points for
which the condition is true.

A few examples:

Y[1...] = Y[n-1] + y[n] # integrate

X[...-1] = (x[n]+x[n+1])/2; # reduces

Reference

yl...-1] = y[n]+y[n+1]; # two tines
del et e(n%2==1) # nunber of points

del ete(not a) # delete inactive points
X = 4*pi * sin(x/2*pi/180) / 1.54051 # changes x scale (2theta -> Q

make equal step, keep the nunber of points the sane
X =x[0] +n* (x[M1]-x[0]) / (M1), Y =y[x=X, S=s[x=X], A= a[x=X]

take the first 2000 points, average them and substract as background
Y =y - avg(y if n<2000)

fityk can al so be used as a sinple calculator

i 242 #4

i sin(pi/4)+cos(pi/4) #1.41421

i gamma(10) #362880

exanpl es of aggregate functions

i max(y) # the largest y value

i sunm(y>avg(y)) # the nunber of points which have y value greater than arithnmetic nmegn
Y =y / darea(y) # nornalize data area

|

darea(y-F(x) if 20<x<25)

There is aso another kind of transformations, dataset tranformations, which operate on a whole
dataset, not single points. The syntax (for one dataset) is. @0 = dstransfornmati on @0, where
dstransf or mat i on can be one of:

sum_same X Merges points which distance in x is smaller than epsi | on. x of amerged point is
the average, and y and sigma are sums of components.

avg_same X The same as sum_same _x, but y and sigma of a merged point is set as an average of
components.

shirley_bg Calculates Shirley background (useful in X-ray photoelectron spectroscopy).

rm_shirley_bg Calculates data with removed Shirley background.

Functions and variables in data transformation

information in this section are not often used in practice. Read it after reading the section called “ Sum of
fitted functions ™.

Variables ($foo) and functions (%bar) can be used in data transformations, and a current value of data
expression can be assigned to the variable. Values of the function parameters (e.g. %fun.a0) and pseudo-
parameters Center, Height, FWHM and Area (e.g. %fun.Area) can also be used. Pseudo-parameters are
supported only by functions, which know how to cal cul ate these properties.

Some properties of functions can be calculated using functionsnunar ea, f i ndx and ext r emum

numarea(% , x1, x2, n) givesareaintegrated numericaly from x1 to x2 using trapezoida rule
with n equal steps.

findx(%, x1, x2, y) findsxininterval (x1, x2) such that %f(x)=y using bisection method combined
with Newton-Raphson method. It is arequirement that %f(x1) <y < %f(x2).

extremunm(%, x1, x2) findsxininterva (x1, x2) such that %f'(x)=0 using bisection method. It is
arequirement that %f'(x1) and %f'(x2) have different signs.

A few examples:

$foo = {y[0]} # data expression can be used in variable assignnment
$f002 = {y[0] in @} # dataset can be given if necessary
Y =y / $foo # and variables can be used in data transfornmation

Reference

Y=y - % (x) # substracts function % fromdata

Y=y - @.F(x) # substracts all functions in F

Z += Constant(~0) # fit constant x-correction (this can be caused...

fit # ...by a shift in scale of the instrunment collecting data),
X=x+ @.2(x) # ...remove it fromthe dataset,

Z=0 # ...and clear the x-correction in the sum

info numarea(% un, 0, 100, 10000) # shows area of function % un
info %un.Area # it is not always supported

info % 1(extremun(%1, 40, 50)) # shows extrenmum val ue

cal cul ate FWHM nunerically, value 50 can be tuned

$c = {% . Center}

i findx(%, $c, $c+50, % .Height/2) - findx(%, $c, $c-50, % .Height/?2)
i % .FWHM # should give al nbst the sane.

Working with multiple datasets

Let uscall aset of datathat usually comes from onefile - adataset. All operations described above assume
only one dataset. If there are more datasets created, it must be explicitly stated which dataset the command
isbeing applied to, e.g. M=500 i n @. Datasets have numbers and are referenced by '@" with the number,
e.g @. @ meansal datasets, (e.g. Y=y/ 10 in @).

To load dataset from file, use one of commands:
@n <fil enane[:xcol :ycol :scol :bl ock][fil etype options...]

@+ <fil ename[:xcol :ycol :scol :bl ock][fil etype options...]
Thefirst one uses existing data slot and the second one creates a new slot. Using @+ increases the number
of datasets, and command delete @n decreasesit.

The syntax
@n =[dat aset _transformati on] @m[+ @k [+...]]

@+ =[dat aset _transformation]@m[+ @k [+...]]

can be used to duplicate a dataset (@+ = @n), to create new dataset as a sum of two or more existing sets
(@+ = @n + @m+),.to perform dataset transformations[8] (@n = dat aset _t ransfornati on
@n), etc. A sum of datasets contains all points from all component datasets. If you want to merge points
with the same x value, use one of dataset transformations: @+ = sum_same x @n + @m+

Each dataset has a separate sum, i.e. amodel that can be fitted to the data. This is explained in the next
chapter.

Each dataset also has a title (it does not have to be unique, however). When loading file, a title is
automatically created, either using the filename or by reading it from the file (depending on the format of
thefile). Titles can be changed using the command set @n.titlesnew-ti t | e . To seethe current title of
the dataset, use info titlein @n.

Itispossibleto show values of adataexpression calculated for each dataset. Example:i + avg(y) in @.

Exporting data
Command

i nf o dat asl ot (expression,..)>fil ename
can export datato an ASCII TSV (tab separated values) file. To export datain a 3-column (x, y and standard
deviation) format, usei nfo @ (x, y, s) > file.Ifaisnotlistedinthelist of columns, such
asin this example, only the active points are exported.

Reference

All expressionsthat can be used on the right-hand side of datatransformations can also be used in the column
list. Additionally, F and Z can be used with dataset prefix, eg. info @ (n+l1l, X, vy, F(x),
y-F(x), Z(x), % oo(x), a, sin(pi*x)+y”2) > bar.tsv.

Sum of fitted functions

Sum - Introduction

The sum of functions S (the curve that isfitted to the data) isitself afunction. The value of the whole sum
is computed as a sum of the functions, like Gaussians or polynomials, and can be given by the formula:

5=351 i, where f; is a function of x, and depends on a vector of parameters a. This vector contains all
fitted parameters. Because we often have the situation, that the error in the x coordinate of data points can
be modeled with function z(x; @), we introduce this term to sum:

S(z;a) = Z filz + z(z;a);a)

where 2(%38) = 22;2i(%;a) Note that the same x-correction z(x) isused in all functionsf;.

Now we will have a closer look at f; functions. Every function f; has a type chosen from the function types
available in the program. The same is true about functions z;. One of these typesis the Gaussian. It has the
following formula:

ag exp {_ n(2) (I ;:‘ﬂ

There are three parameters of Gaussian. These parameters do not depend on x. There must be one variable
bound to each parameter.

Variables

Variablesin Fityk have names prefixed with the dollar symbol ($). A variableiscreated by assigning avalue
toit, e.g. $f 00o=~5. 3 or $c=3. 1 or $bar =5* si n($f 00) . $f 00 ishere aso-called smplevariable. It
iscreated by assigning to it real number prefixed with ~. The *~' meansthat the value assigned to the variable
can be changed when fitting the sum of the functions to the data. For people familiar with optimization
techniques: the number of defined simple variablesis the number of dimensions of space we are looking for
the optimum in. In the above example, the variable $c is actually a constant. $bar depends on the value
of $f 0o0. When $f oo changes, the value of $bar also changes. Compound variables can be build using
operators+, -, *,/,~andthefunctionssqrt ,exp,l ogl10,l n,si n,cos,t an,si nh,cosh,t anh, at an,
asi n,acos,erf,erfc,l gamra, voi gt . Thisisasubset of the functions used in data transformations.

Every simple parameter has a value and, optionally, domain. The domain is used only by the fitting
algorithms which need to randomly initialize or change variables. Genetic Algorithms are a good example.

Variables can be used in data tranformations, e.g. Y=y/ $a.

The value of the data expression can be used in the variable definition, but it must be inside braces, e.g.
$bl eh={ M or, to create asimple variable: $bl eh=~{ M .

Sometimesit is useful to freeze avariable, i.e. to prevent it from changing whilefitting. There is no special
syntax for it, but it can be done using data expressions in this way:

$a
$a
$a

~12.3 # %a is fittable
{$a} # $a is not fittable
~{$a} # $a is fittable again

10

Reference

It is also possible to define avariable as e.g. $bl eh=~9. 1* exp(~2) . In this case two simple variables
(with values 9.1 and 2) will be created automatically. Automatically created variablesarenamed $_1,$_2,
$ 3, and soon.

Variables can be deleted using the command delete $var i abl e.

Some fitting algorithms need to randomize the parameters of the fitted function (i.e. simple variables). For
this purpose, the simple variable can have a specified domain. Note that the domain does not imply any
constraints on the value the variable can have -- it isonly a hint for fitting methods such as the Nelder-Mead
simplex or Genetic Algorithms. Further information on how the domain isused in these methodsis contained
in the appropriate fitting description. The syntax is as follows:

$a = ~12.3 [11 + 5] # center and width of the dommin is given

$b = ~12.3 [+ 5] # if the center of the domain is not specified,
current value of the variable is used

If the domain is not specified, the value of vari abl e- domai n- per cent option is used (domain is
+/- value-of-variable * value-of-the-option / 100)

Function types and functions

Let us go back to functions. Function types have names that start with upper case letter, e.g. Linear or Voigt.
Functions (i.e. function instances) have names prefixed with a percent symbol, e.g. %func. Every function
has atype and variables bound to its parameters.

To see alist of available function types, use the command info types. Y ou can also use the command info
t ypenane, eqg.i nf o Pear son7 to seethe names of the parameters, default values and formulae.

Functionscan be created by giving thetype and the correct number of comma-separated variablesin brackets,
eg. % = Gaussian(~66254., ~24.7, ~0.264) or% = Gaussian(~6e4, $ctr,
$b+$c) . Every expression which isvalid on the right-hand side of a variable assignment, can also be used
asavariable. If it is not simply a name of a variable, an automatic variable is created. In the last example
two variables are created (value 60000 and the sum).

The second way is to give named parameters of a function, in any order, eg. % =
Gaussi an(hei ght =~66254., hwhn=~0. 264, center=~24.7) Function types can can
have specified default values for some parameters, so this assignment is also valid: u =
Pear son7(hei ght =~66254., center=~24.7, fwhm=~0.264) ,athough the shape parameter
of Pearson7 is not given.

A deep copy of function (i.e. all variablesthat it depends on are al so copied) can be made using the command
% unct i on =copy(¥%anot her f uncti on)

Functions can be aso created with the command guess, as described in the section called “ Guessing peak
location ™.

Y ou can change a variable bound to any of the function parametersin this manner:

=-> 9% = Pearson7(hei ght=~66254., center=~24.7, fwhnr~0.264)
New function 9% was created.

=> % .center=~24.8

=-> $h = ~66254

=-> % . hei ght =$h

=->info %
% = Pearson7($h, $ 5, $ 3, $_4)
=-> $h = ~60000 # variabl es are kept by nane, so this also changes %

=-> 9pl.center = Yp2.center + 3 # keep fixed di stance between %1 and %p2

Functions can be deleted using the command delete % unct i on.

11

Reference

User-defined functions (UDF)

User-defined function types can be created using command define, and then used in the sameway as built-in
functions. The name of new type must start with an upper-case letter, contain only letters and digits, have
at least two characters and must not be the same as the name of built-in function. Defined functions can be
undefined using command undefine.

The name of a UDF should be followed by parameters in brackets (see examples). Names of parameters
should contain only lower-case alphanumeric characters and the underscore (), and start with lowercase
letter. The name "x" is reserved, do not put it into parameter list, just use it on the right-hand side of the
definition.

Each parameter can have a specified default value. To alow adding a peak with the command guess, the
default valueis given as an expression which can then be calculated for aknown "height”, "center", "fwhm"
and "ared’. If the nameitself is one of the following: "height", "center”, "fwhm, "area" or "hwhm", default
value is deduced (in case of "hwhm" it is "fwhm/2").

UDFs can be defined either by giving afull formula, or asa sum of already defined functions, with possible
re-parametrization (see GaussianArea and GL Sum below for the example of the latter). When giving afull
formula, right-hand side of the equality sign is similar to the definiton of variable, but the formula can also
depend on x. Hopefully the examples below will make the syntax clear.

How it works (you can skip this paragraph): the formulais parsed, derivatives of the formula are calculated
symbolically, all expressions are smplified (but there is alot of space for optimization here), bytecode is
created for a kind of virtual machine, and when fitting, the VM calculates the value of the function and
derivatives for every point. Common Subexpression Elimination is not implemented yet, | suppose it will
noticeably speed up UDFs.

Hint: usethei ni t file for often-used definitions. See the section called “Invoking fityk ” for details.

Examples:

first how some built-in functions could be defined

define MyGaussi an(hei ght, center, hwhm) = hei ght*exp(-1n(2)*((x-center)/hwhm"2)
define MyLorentzi an(hei ght, center, hwhm) = height/(1+((x-center)/hwhm"2)
define MyCubi c(aO=hei ght, al=0, a2=0, a3=0) = a0 + al*x + a2*x"2 + a3*x"3

supersonic beamarrival tine distribution
define SuBeArTiDi (c, s, v0O, dv) = c*(s/x)"3*exp(-(((s/x)-v0)/dv)"2)/x

area-based Gaussi an can be defined as nodification of built-in Gaussian
(it is the sanme as built-in Gaussi anA function)

sum of Gaussian and Lorentzian, a.k.a PseudoVoi gt (should be in one line)
define GL.Sun(hei ght, center, hwhm shape) = Gaussian(hei ght*(1-shape), center, hwhm
+ Lorentzi an(hei ght *shape, center, hwhm

to change definition of UDF, first undefine previous definition
undef i ne Gaussi anArea

Speed of computations

With default settings, the value of every function is calculated at every point. Functions such as Gaussian
often have non-neglectible values only in a small fraction of all points. To speed up the calculation, set the
optioncut - functi on- 1 evel toanon-zero value. For each function the range with values greater than
cut -function-1evel will beestimated, and all values outside of this range are considered to be equal
zero. Note that not all functions support this optimization.

If you have a number of loaded dataset, and the functionsin different datasets do not share parameters, it is
faster to fit the datasets sequentially (fit @; fit @; ...)thenparaldly(fit @).

12

define Gaussi anArea(area, center, hwhm = Gaussian(areal/fwhnsqgrt(pi*In(2)), center, hwhm

Reference

Each defined simple-variable slows down the fitting, although this is often negligible.

Sum, Fand Z

As dready discussed, each dataset has a separate sum. i.e. a model that can be fitted to the data. As can
be seen from the formula above, the sum consists of functions f; and z;. Each dataset has two sets named
F and Z, containing the names of the functions. The sum is constructed by specifying which functions are
in Fand whichin Z.

In many cases x-correction Z can safely be ignored. The fitted curve is thus the sum of all functionsin F.
These functions can be listed with info F.

Command F += % unct i on puts % uncti on into F, command Z += % unct i on puts % uncti on
into Z. To remove % unct i on from F (or Z) either do F -= % uncti on or delete % uncti on (del
% unct i on). If there is more than one dataset, F and Z must be prefixed with the dataset number (e.g.
@.F +=% uncti on). Thefollowing syntax isalso valid:

create and add funtion to F

%y = Gaussi an(hei ght =~66254., hwhm=~0. 264, center=~24.7)
@.F += %

create automatically nanmed funtion and add it to F

@. F += Gaussi an(hei ght =~66254., hwhn¥~0. 264, center=~24.7)
clear F

@.F=0

clear F and put three functions in it

@.F =% + % + %

show info about the first and the last function in @.F
info @.F0], @.F[-1]

the sane as %bcp = copy(%)

Y%ocp = copy(@. F[1])

make @L.F the exact (shallow) copy of @.F

@a.rF=@.F

make @L.F a deep copy of @.F (all functions and vari abl es
are duplicated).

@.F = copy(@.F)

The sum can be exported as data points, using the syntax described in the section called “Exporting data’,
or as mathematical formulae, using the command info formula in @n > fi | enane. Some primitive
simplifications are applied to the formula. To prevent it, put plus sign (+) after "info". The style of the
formula output, governed by the f or nul a- export - st yl e option, can be either "normal" (exp(-x"2))
or "gnuplot” (exp(-x**2)).

Peak parameters can be exported using the command info peaksin @n > fi | enane. Put the plus sign
(+) after "info" to aso export symmetric errors of the parameters. " @*" will export formulae or parameters
used in all datasetsto the samefile.

It is often required to keep the width or shape of peaks constant for al peaks in the dataset. To
change the variables bound to parameters with a given name for all functions in F, use the command:
F.par anrvari abl e . Examples:

F. hwhnme$f oo # hwhm's of all functions in F that have parameter hwhmw || be
equal to $foo. (hwhm here neans hal f-w dt h-at - hal f - maxi nrum
F. shape=% 1. shape # variable bound to shape of peak %1 is bound
also to shapes of all functions in F
F. hwhn¥~0.2 # For every function in F a new variable is created and bound
to parameter hwhm Al paraneters are independent.

Guessing peak location

It is possible to guess peak location and add it to F with the command: %mane = guess PeakType
[x1:x2] in @n , eg.guess Gaussian [22.1:30.5] in @.If therangeisomitted, the whole
dataset will be searched. Name of the function is optional. Some of parameters can be specified with

13

Reference

syntax par anet er =vari abl e, eg. guess PseudoVoi gt [22.1:30.5] center=%ctr,
shape=~0.3 in @.

As an exception, if the range is omitted and the parameter cent er is given, the peak is searched around
thecent er, +/- value of the option guess- at - cent er - pm

Fityk offers only a primitive algorithm for peak-detection. It looks for the highest point in a given range,
and than triesto find the width of the peak.

If the highest point is found near the boundary of the given range, it is very probable that it is not the peak
top, and, if the option can- cancel - guess isset to true, the guessis cancelled.

There are two real-number optionsrelated to guess: hei ght - correcti on andw dt h- correcti on.
The default value of them is 1. The guessed height and width are multiplied by the values of these options
respectively.

Displaying information

If you areusing the GUI, most of the availableinformation can be displayed with mouseclicks. Alternatively,
you can use the info command. Using info+ instead of info sometimes displays more verbose information.

Below is the list of arguments of info+ related to this chapter. The full list is in the section called “info:
show information”

info guessr ange shows where the guess command would find a peak.

info functions listsall defined functions

info variables lists al defined variables

info @n.F shows information about F

info @n.z shows information about Z

info formulain @n shows the mathematical formulae of the fitted functions,

info @n.dF(x) compares the symbolic and numerical derivativesin x (useful for debugging).
Fitting

Nonlinear optimization

This is the core. We have a set of observations (data points), to which we want to fit a model (or sum of
functions) that depends on adjustable parameters. Let me quote Numerical Recipes, chapter 15.0, page 656
(if you do not know the book, visit http://www.nr.com):

Thebasic approachin all casesisusually the same: Y ou choose or design afigure-of-merit
function (merit function, for short) that measures the agreement between the data and
the model with a particular choice of parameters. The merit function is conventionally
arranged so that small values represent close agreement. The parameters of the model are
then adjusted to achieve aminimum in the merit function, yielding best-fit parameters. The
adjustment processis thus a problem in minimization in many dimensions. [...] however,
there exist special, more efficient, methods that are specific to modeling, and we will
discussthesein thischapter. There areimportant issuesthat go beyond the mere finding of
best-fit parameters. Data are generally not exact. They are subject to measurement errors
(called noise in the context of signal-processing). Thus, typical data never exactly fit the
model that is being used, even when that model is correct. We need the means to assess
whether or not the model is appropriate, that is, we need to test the goodness-of -fit against
some useful statistical standard. We usually also need to know the accuracy with which

14

http://www.nr.com

Reference

parameters are determined by the data set. In other words, we need to know the likely
errors of the best-fit parameters. Finaly, it is not uncommon in fitting data to discover
that the merit function is not unimodal, with a single minimum. In some cases, we may
be interested in global rather than local questions. Not, "how good isthisfit?' but rather,
"how suream | that thereis not avery much better fit in some corner of parameter space?"

Our function of merit is WSSR - the weighted sum of squared residuals, also called chi-square:

X*(a) = Z:: [%_i’;ﬁ] - gmﬁ [; — y(zsa)’

Weights are based on standard deviations, i = 1/7% Y oucanlearn why squares of residualsare minimized

e.g. from chapter 15.1 of Numerical Recipes. So we are looking for a global minimum of chi. This field
of numerical research (looking for a minimum or maximum) is usually called optimization; it is non-linear
and global optimization. Fityk implements three very different optimization methods. All are well-known
and described in many standard textbooks.

The standard deviations of the best-fit parameters are given by the square root of the corresponding diagonal
elements of the covariance matrix. The covariance matrix is based on standard deviations of data points.
Formulae can be found e.g. in GS. Manual [http://mmww.gnu.org/software/gsl/manual/] , chapter Linear
regression. Overview (weighted data version).

Some programs scal e errors with square root of reduced chi? (i.e. with sgrt(WSSR/DoF), where DoF
is the number of degrees of freedom, i.e. the number of active data points minus the number of
parameters). Fityk is not doing this.

Fitting related commands
To fit sum to data, use command

fit [+] [nunber-of-iterations][in@, ...]

Theplussign (+) preventsinitialization of thefitting method. It isused to continue the previousfitting where
it left off. All non-linear fitting methods areiterative. nunber - of - i t er at i ons isthe maximum number
of iterations. There are a so other stopping criteria, so that the number of executed iterations can be smaller.

fit [...] in @ fitsall datasets ssmultaneoudly.

Fitting methods can be set using the set command: set fitting-method = met hod, where method is one of::
Levenberg-Marquardt, Nelder-Mead-simplex, Genetic-Algorithms.

All non-linear fitting methods are iterative, and there are two common stopping criteria. The first is
the number of iterations and can be specified after the fit command. The second is the number of
eval uations of the objectivefunction (WSSR), specified by thevalue of optionnmax- wssr - eval uat i ons
(O=unlimited). It is approximately proportional to time of computations, because most of time in fitting
process is taken by evaluating WSSR. There are also other criteria, different for each method.

If you givetoo small n tofit command, and fit is stopped because of it, not because of convergence, it makes
sense to use fit+ command to process further iterations. [TODO: how to stop fit interactively]

Setting set autoplot = on-fit-iteration will draw aplot after every iteration, to visualize
progress. (see aut opl ot [18])

Information about goodness-of-fit can be displayed usingi nfo fit. To see symmetric errorsusei nf o
errors,andi nf o+ errors additionally shows the variance-covariance matrix.

Available methods can be mixed together, e.g. it is sensible to obtain initial parameter estimates using the
Simplex method, and then fit it using Levenberg-Marquardt.

15

http://www.gnu.org/software/gsl/manual/
http://www.gnu.org/software/gsl/manual/

Reference

Values of al parameters are stored before and after fitting (if they changed). This enables simple undo/redo
functionality. If in the meantime some functions or variables where added or removed, the program can
still load the old parameters, but the result can be unexpected. The following history-related commands are

provided:

fit undo move back to the previous parameters (undo fitting).
fit redo move forward in the parameter history

info fit-history show number of itemsin the history

fit history n load the n-th set of parameters from history

fit history clear clear the history

Levenberg-Marquardt

Thisisastandard nonlinear least-squares routine, and involves computing the first derivatives of functions.
For a description of the L-M method see Numerical Recipes, chapter 15.5 or Siegmund Brandt Data
Analysis, chapter 10.15. Essentially, it combines an inverse-Hessian method with a steepest descent method
by introducing alambda factor. When lambdais equal to 0, the method is equivalent to the inverse-Hessian
method. When lambda increases, the shift vector is rotated toward the direction of steepest descent and the
length of the shift vector decreases. (The shift vector is a vector that is added to the parameter vector.) If
a better fit is found on iteration, lambda is decreased - it is divided by the value of | m | anbda- down-
fact or option (default: 10). Otherwise, lambdais multiplied by the value of | m | anbda- up- f act or
(default: 10). Theinitial lambdavalueisequal tol m | anbda- st art (default: 0.0001).

The Marquardt method has two stopping criteria other than the common criteria. If it happens twice in
sequence, that the relative change of the value of the objective function (WSSR) is smaller then the value of
thel m st op-r el - change option, thefit is considered to have converged and is stopped. Additionally,
if lambdais greater than the value of the| m max- | ambda option (default: 10"15), - usually when due to
limited numerical precision WSSR is no longer changing, the fitting is also stopped.

Nelder-Mead downhill simplex method

To quote chapter 4.8.3, p. 86 of Peter Gans Data Fitting in the Chemical Sciences by the Method of Least
Squares

A simplex is a geometrical entity that has n+1 vertices corresponding to variations in n
parameters. For two parameters the simplex isatriangle, for three parameters the simplex
isatetrahedron and so forth. The value of the objectivefunctioniscalcul ated at each of the
vertices. An iteration consists of the following process. Locate the vertex with the highest
value of the objective function and replace this vertex by one lying on the line between
it and the centroid of the other vertices. Four possible replacements can be considered,
which | call contraction, short reflection, reflection and expansion.|...]

It starts with an arbitrary simplex. Neither the shape nor position of this are criticaly
important, except insofar as it may determine which one of a set of multiple minimawill
be reached. The simplex than expands and contracts as required in order to locate avalley
if one exists. Then the size and shape of the simplex is adjusted so that progress may
be made towards the minimum. Note particularly that if a pair of parameters are highly
correlated, both will be simultaneously adjusted in about the correct proportion, as the
shape of the simplex is adapted to the local contours[...]

Unfortunately it does not provide estimates of the parameter errors, etc. It is therefore to
be recommended as a method for obtaining initial parameter estimates that can be used
in the standard least squares method.

Thismethod is aso described in previously mentioned Numerical Recipes (chapter 10.4) and Data Analysis
(chapter 10.8).

16

Reference

There are afew options for tuning this method. One of these is a stopping criterium nm conver gence.
If the value of the expression 2(M-m)/(M+m), where M and m are the values of the worst and best vertices
respectively (values of objective functions of vertices, to be precise!), is smaller then the value of nm
conver gence option, fitting is stopped. In other words, fitting is stopped if all vertices are aimost at the
same level.

The remaining options are related to initialization of the simplex. Before starting iterations, we have to
choose a set of points in space of the parameters, called vertices. Unless the option nm nove- al | isset,
one of these pointswill be the current point - valuesthat parameters have at this moment. All but thisone are
drawn asfollows: each parameter of each vertex isdrawn separately. It is drawn from adistribution that has
its center in the center of the domain [11] of the parameter, and a width proportiona to both width of
the domain and value of thenm nmove- f act or parameter. Distribution shape can be set using the option
nm di stri buti on asoneof: uniform, gaussian, lorentzian and bound. The last one causes the value of
the parameter to be either the greatest or smallest value in the domain of the parameter - one of two bounds
of the domain (assuming that nm nove- f act or isequa 1).

Genetic Algorithms

[TODO]

Settings

This chapter is not about GUI settings (things like colors, fonts, etc.), but about settings that are
common for both CLI and GUI version.

Command info set shows the syntax of the set command and lists al possible options. set opt i on shows
the current value of the opt i on, and set opti on =val ue changesit. It is aso possible to change the
value of the option for one command only by prepending the command with with opt i on =val ue . The
examples at the end of this chapter should clarify this.

autoplot
can-cancel-guess
cut-function-level
data-default-sigma

epsilon

exit-on-warning

fitting-method
formula-export-style
guess-at-center-pm
height-correction

Im-*

max-wssr-eval uations
nm-*

pseudo-random-seed

See the section called “plot: viewing data” [18].

See the section called “ Guessing peak location ™.

See the section called “ Speed of computations’.

See the section called “ Standard deviation (or weight) ”.

It is used for floating-point comparison: a and b are considered equal
when |a-bl<epsi | on. You may want to decrease it when you work
with very small values, like 10"-10.

If the option exi t - on- war ni ng is set, any warning will also close
the program. This ensures that no warnings can be overlooked.

See the section called “Fitting related commands ”.

See the section called “Sum, Fand Z” [13].

See the section called “ Guessing peak location ”.

See the section called “ Guessing peak location ”.

Setting to tune Levenberg-Marquardt fitting method.

See the section called “Fitting related commands ”.

Setting to tune Nelder-Mead downhill simplex fitting method.

Some fitting methods and functions, such as r andnor mal in data
expressions use apseudo-random number generator. In some situations

17

Reference

one may want to have repeatable and predictable results of the fitting,
e.g. to make apresentation. Seed for anew sequence of pseudo-random
numbers can be set using the option pseudo- r andom seed. If it
is set to 0, the seed is based on the current time and a sequence of
pseudo-random numbers is different each time.

variable-domain-percent See the section called “Variables’ [11].
verbosity Possible values: quiet, normal, verbose, debug.
width-correction See the section called “ Guessing peak location ”.
Examples:

set fitting-method # show info

set fitting-method = Nel der- Mead- si npl ex # change default mnethod

set verbosity = verbose

with fitting-nethod = Levenberg-Marquardt fit 10

with fitting-nethod=Levenberg-Marquardt, verbosity=only-warnings fit 10

Other commands

plot: viewing data
In the GUI version there is hardly ever a need to use this command directly.

The command plot controls visualization of data and the sum. It is used to plot agiven area- in GUI it is
plotted in the program's main window, in CLI the popular program gnuplot is used, if available.

pl ot [xrange [yrange]] [in @n]
xrange andyr ange have one of two following syntaxes:

{[} [m n] : [max] {]}

The second isjust adot (.), and it implies that the appropriate range is not to be changed.

Examples:
pl ot [20.4:50] [10:20] # show x from20.4 to 50 and y from 10 to 20
plot [20.4:] # x from20.4 to the end,
y range will be adjusted to enconpass all data
plot . [:10] # x range will not be changed, y fromthe | owest point to 10
plot [:] [:] # all data will be shown
pl ot # all data will be shown
plot . # not hi ng changes

The value of the option aut opl ot changes the automatic plotting behaviour. By default, the plot is
refreshed automatically after changing the data or the sum of functions. It is also possible to visualize each
iteration of the fitting method by replotting the peaks after every iteration.

info: show information

First, there is an option ver bosi t y (not related to command info) which sets the amount of messages
displayed when executing commands.

If you are using the GUI, most information can be displayed with mouse clicks. Alternatively, you can use
theinfo command. Using the info+ instead of info sometimes displays more detailed information.

18

Reference

The output of info can be redirected to fileusing infoargs >fi | ename syntax to truncate the file or
infoar gs >>fil enane toappendtothefile.

The following arguments are recognized:

variables
$vari abl e_nane

types

TypeNanme

functions

% uncti on_nane

datasets

data[in @n]

title [in @n]

filename[in @n]

commands

commands [n:m]

view

Set

fit[in @n]

fit-history

errors[in @n]

formula[in @n]

peaks[in @n]

guess [x-range] [in @n]

dat a- expr essi on [in @n]
[@n]F

[@n]Z

[@n.]dF(dat a- expr essi on)
der mat hemati c- functi on
version

info der shows derivatives of given function.

=-> info der sin(a) + 3*exp(b/a)
f(a, b) = sin(a)+3*exp(b/a)

df / d a = cos(a)-3*exp(b/a)*b/ar2
df / d b = 3*exp(b/a)/a

commands, dump, sleep, reset, quit

All commandsgiven during program execution are stored in memory. They can belisted using the command:
info commands [n:n] or written to file: info commands [n:m > fi | enanme . To put all commands
executed so far during the session into the filef co. fit, typei nfo commuands[:] > foo.fit.
With the plus sign (+) (i.e. info+ commands[n:n]) information about the exit status of each command
will be added.

Tolog commandsto afilewhenthey are executed, use: commands>fi | enane or, tolog also the output:
commands+ >fi | ename . To stop logging, use: commands > /dev/null .

Scripts can be executed using the command: commands<fi | enane .

Thereisaso acommand dump > f i | ename, which writes the current state of the program together with
all datasetsto asingle -fit file.

Command sleep sec makes the program wait sec seconds, before continuing.

The command quit works as expected. If this command is found in a script it quits the program, not only
the script.

19

Chapter 4. Using and extending

Use cases

[TODO]
Extensions

How to add your own built-in function

Add built-in function only if user-defined function (UDF) istoo slow or too limited.

To add a built-in function, you have to change the source of the program and then recompile it. Users who
want to do this should be able to compile the program from source and know the basics of C, C++ or another
programming language.

The description that follows is not complete. If something is not clear, you can always send me e-mail, etc.
"fp" you can seein fityk source means areal (floating point) number (typedef double fp).

The name of your function should start with uppercase letter and contain only letters and digits. Let us add
function Foo with the formula: Foo(height, center, hwhm) = height/(1+((x-center)/hwhm)"2). C++ class
representing Foo will be named FuncFoo.

In src/func.cpp you will find alist of functions:

FACTORY_FUNC(Pol ynomi al 6)
FACTORY_FUNC(Gaussi an)

Now, add:

FACTORY_FUNC(Foo)

Then find another list:

FuncPol ynom al 6: : f ornul a,
FuncGaussi an: : fornul a,

and add the line

FuncFoo: : fornul a,

Note that in the second list al items but the last are followed by comma.

Inthefilesr ¢/ bf unc. h you can now begin writing the definition of your class:

class FuncFoo : public Function

DECLARE_FUNC_OBL| GATORY_METHODS(Foo)

20

Using and extending

If you want to make some calculations every time parameters of the function are changed, you can do it in
method do_precomputations. This possibility is provided for calculating expressions, which do not depend
on x. Write the declaration here:

voi d do_preconputations(std::vector<Variabl e*> const &vari abl es);

and provide a proper definition of thismethod in sr ¢/ bf unc. cpp.

If you want to optimize the cal culation of your function by neglecting its value outside of a given range (see
optioncut - functi on- 1 evel intheprogram), you will need to use the method:

bool get_nonzero_range (fp level, fp & eft, fp &ight) const;

This method takes the level below which the value of the function can be approximated by zero, and should
set the left and right variables to proper values of X, such that if x<left or x>right than [f(X)|<level. If the
function sets left and right, it should return true.

If your function does not have a "center" parameter, and there is a center-like point where you want the
peak top to be drawn, write:

bool has_center() const { return true; }
fp center() const { return vv[1]; }

In the second line, between return and the semicolon, thereis an expression for the x coordinate of peak top;
w[0] isthefirst parameter of function, vv[1] isthe second, etc.

Finally, close the definition of the class with:

Now gotofilesr ¢/ bf unc. cpp.

Write the function formulain this way:

const char *FuncFoo::fornula
= "Foo(hei ght, center, hwhn) = height/(1+((x-center)/hwhm"2)";

The syntax of the formulaisthe similar asthat of the UDF, but for built-in functions only the left hand side
of the formulais parsed. The right hand side is for documentation only.

Write how to calculate the value of the function:

FUNC_CALCULATE_VALUE_BEQ N(Foo)

fp xala2 = (x - vv[1]) [/ vv[2];

fp inv_denonmin = 1. / (1 + xala2 * xala2);
FUNC_CALCULATE_VALUE_END(vv[0] * inv_denom n)

The expression at the end (i.e. v[0]*inv_denomin) is the calculated value. xalxa2 and inv_denomin are
variables introduced to simplify the expression. Note the "fp" (you can aso use "doubl€") at the beginning
and semicolon at the end of both lines. The meaning of vv has aready been explained. Usually it is more
difficult to calculate derivatives:

FUNC_CALCULATE_VALUE_DERI V_BEQ N(Foo)
fp xala2 = (x - vv[1]) / vv[2];
fp inv_denonmin = 1. / (1 + xala2 * xala2);

21

Using and extending

dy_dv[0] = inv_denom n;
fp dcenter = 2 * vv[0] * xala2 / vv[2] * inv_denonmin * inv_denonn;
dy_dv[1] = dcenter;
dy_dv[2] = dcenter * xalaZ2;
dy_dx = -dcenter;
FUNC_CALCULATE_VALUE_DERI V_END(vv[0] * inv_denomi n)

You must set derivatives dy_dv[n] for n=0,1,...,(number of parameters of your function - 1) and dy_dx. In
the last brackets there is a value of the function again.

If you declared do_pr econput ati ons or get _nonzer o_r ange methods, do not forget to write
definitions for them.

After compilation of the program check if the derivatives are calculated correctly using command "info
dF(x)", eg. i dF(30.1). You can aso use numar ea, fi ndx and ext r emum (see the section called
“Functions and variables in data transformation” for details) to verify center, area, height and FWHM
properties.

Hope this helps. Do not hesistate to change this description or ask questions if you have any. Consider
sharing your function with other users (using FitykWiki or mailing list).

22

Appendix A. List of functions

Thelist of all functions can be obtained usingi + t ypes. Someformulae here have long parameter names
(like "height", "center" and "hwhm") replaced with g; .

Equation A.1. Gaussian

—1In(2) ('?: ;;11)2}

Equation A.2. SplitGaussian

Y = apexp

Gaussian(z; ag, @y, aa) < aq

y(x;ag,ay.dag,as) = {

Gaussian(z; ag, ay,a3) = > aq

Equation A.3. GaussianA

—In(2) ('T ;2”»1)1

Equation A.4. Lorentzian
y=—0
14 ()’

az

- If.'111(2)(_1.11.)
y=\— 2 exp

Equation A.5. LorentzianA
g

Tas [1 + (%)QJ

Equation A.6. Pearson V11 (Pearson7)
gy

T ()

Equation A.7. Split-Pearson-VI1 (SplitPear son7)

y:

y:

Pearson7(x; ag, aq.as, aq) * < ay

3;(.!': t'in.i'q.tI—Q.ﬂ-g.(ﬂ4.t’i5j - -
PearsonT(z; ag, a1, as,a5) = > aq

Equation A.8. Pearson-VII-Area (Pearson7A)

! 1
agl’(az)y/ 2% — 1

2 3
aol"(ag — %JI\/E |:1 + (%L) (2‘11_3 —]_):|

y=

Equation A.9. Pseudo-Voigt (PseudoVoigt)

y = ao [(1 — ag) exp (_ In(2) (-‘1* ;;1)?) i + (L)Ql

23

List of functions

Pseudo-Voigt is a hame given to the sum of Gaussian and Lorentzian. ag parameters in Pearson VIl and
Pseudo-Voigt are not related.

Equation A.10. Pseudo-Voigt-Area (PseudoVoigtA)

(1 —ag)vIn2 i —ag\? g
Y =ag | ——————exp —1112() - 5
/T) w1 (52)']

Equation A.11. Voigt

Foo exp(—t) di

a’ﬁ,’_) T—m
*ag (A t)?

fj-.:: exq(—i:’\ di

az+t?

y:

The Voigt function is a convolution of Gaussian and Lorentzian functions. ag = heigth, a1 = center, & is
proportional to the Gaussian width, and ag is proportiona to the ratio of Lorentzian and Gaussian widths.
Voigt is computed according to R.JWEells, “ Rapid approximation to the Voigt/Faddeeva function and its
derivatives”, Journal of Quantitative Spectroscopy & Radiative Transfer 62 (1999) 29-48. (See also: http:/
www.atm.ox.ac.uk/user/wells/voigt.html). I's the approximation exact enough for all possible uses of fityk
program?

Equation A.12. VoigtA

dt

o /*” exp(—t?)
Y =
VT Vras) (220

Equation A.13. Exponentially M odified Gaussian (EM G)

o 5 211'@{)(5}—:1:_{_i) i_m_f(b—m_‘_ e)}
Y=79a FP\Ta Ta) |l U\ Ve T Ve

Equation A.14. Doniach-Sunjic (DoniachSunjic)

h ["';—“ + (1 — a)arctan (%)]
- F+(z—E)

]

Equation A.15. Polynomial5

2 3 4 5
Yy = ag+ a1x + azr” + azx” + agr + asx’

24

Appendix B. Command shortenings

The pipe symbol (]) shows the minimum length of the command. "def|ine" means that the shortest version
is "def", but "defi", "defin" and "define" are also valid and mean exactly the same. Arguments of "info"
command can not be shortened, i.e. you must write "i fit", not "i f*. Commands which cannot be shortened
arenot listed here.

clommands
defline

flit

gluess

iInfo

p|lot

slet
undef|ine
wlith

25

Appendix C. License

Fityk is free software; you can redistribute and modify it under terms of GNU General Public License,
version 2. Thereis no warranty. Text of the license is distributed with the program in the file COPYl NG

26

Appendix D. About this manual

This manual is written in DocBook (XML) and converted to other formats. Thef i t ykhel p. xm fileis
distributed with the program sources, and can be modified with any text editor. All changes, improvements,
corrections, etc. are welcome.

Following people have contributed to this manual (in chronological order): Marcin Wojdyr (maintainer),
Stan Gierlotka, Jaap Folmer, Michagl Richardson.

Thisversion of the manual isproduced fromf i t ykhel p. xm $Revision: 403 $, last modification: $Date:
2008-03-10 16:02:28 +0100 (Mon, 10 Mar 2008) $.

27

Bibliography

[1] William Press, Saul Teukolsky, William Vetterling, and Brian Flannery. Numerical Recipes in C. http://
WWW.Nr.com.

[2] Peter Gans. Data Fitting in the Chemical Sciences by the Method of Least Squares. John Wiley & Sons. 1992.
[3] Siegmund Brandt. Data Analysis. Springer Verlag. 1999.
[4] PeakFit 4.0 for Windows User's Manual. AISN Software. 1997.

[5] Zbigniew Michalewicz. Algorytmy genetyczne + struktury danych = programy ewolucyjne. WNT. 1996.

28

